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Aneesh Muppidi

Learning to See Agents
with Deep Variational Inference

ABSTRACT

Unsupervised agent discovery is the ability to identify and model intentional
agents from raw perceptual data without explicit supervision. While neurocogni-
tive theories propose different neural mechanisms for agent perception—including
mirror neurons and the superior temporal sulcus (STS), we lack computational al-
gorithms that can fully describe agent perception. Existing computational models
of agent perception operate on simplified symbolic inputs rather than the raw per-
ceptual data that biological systems process. We introduce a variational objective
(LVAD) that formulates vision-based agent discovery as structured inference over
latent actions. Based on LVAD, we implement a deep conditional slot-based vari-
ational autoencoder called VAD (Variational Agent Discovery) model. Our
model learns internal agent representations directly from raw pixel-based obser-
vations, outperforming baselines on predictive tasks including agent action and
goal inference in three video-game settings. VAD’s internal representations gen-
eralize robustly to novel agents and environmental configurations, demonstrating
up to 33% advantage in transfer scenarios. The VAD model exhibits predictive
capabilities analogous to those observed in infant cognition studies, correctly pre-
dicting that agents will take efficient paths to goals when environmental constraints
change. Analysis of learned representations reveals functional decomposition of vi-
sual scenes along agent-centric lines, with certain neural features exhibiting human
mirror-neuron-like activation patterns across different agents performing the same
actions. When incorporated as an auxiliary loss in multi-agent reinforcement learn-
ing, our LVAD objective improves sample efficiency by 21.8% and final performance
by 7.6%.

Code, Data, and Conceptual Animations are available here.

https://aneeshers.github.io/HarvardSeniorThesis/
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Chapter 1

Introduction

What constitutes an agent? Look at a sequence of frames from Heider and Simmel’s
classic 1944 experiment (Figure 1.1). The experiment consists of both moving and static
geometric shapes: two triangles, a circle, and a rectangular box. Which of these geometric
objects are agents?

Figure 1.1: Drawing of a sequence of frames from Heider and Simmel (1944)’s experiment.

Even without animation, most observers intuitively identify the triangles and circle as
intentional agents while perceiving the rectangular walls as inanimate objects. This phe-
nomenon demonstrates our remarkable ability to distinguish agents from non-agents based
on minimal visual information, without requiring biological features like faces or limbs. Could
a deep learning or AI model do the same?

When we observe moving entities, our brains analyze motion patterns, identifying sig-
natures of agency. Self-propelled movement, sudden changes in direction, and contingent
reactivity to other entities trigger neural processing that leads us to perceive intention be-
yond mere motion (Heider and Simmel, 1944; Michotte, 1964; Scholl and Gao, 2013). As
Scholl and Tremoulet (2000) argue, agency detection engages specialized visual processing
mechanisms triggered by specific motion cues that violate expected physical dynamics. This
perception can also allows us to attribute goals to entities based on their movement patterns
Gergely and Csibra (2003).

Our ability to detect and represent agents is fundamental to navigating our social world.
From predator avoidance to social cooperation, from interpreting communicative gestures to
predicting others’ behavior, agent recognition supports numerous aspects of social cognition.
Neuroscientific evidence indicates that our brains utilize multiple regions for this task—
including the superior temporal sulcus (STS) which processes movement trajectories, and
the mirror neuron system, which activates similarly whether we perform an action or observe
others performing it (Frith, 2007; Fulvia Castelli, 2000).

8



1.1. COGNITIVE NEUROSCIENCE MOTIVATION 9

Despite this foundational role in human cognition, artificial intelligence models struggle
with perceiving agency from visual input. While modern deep learning approaches have suc-
cessfully modeled physical object interactions, scene representations, and object recognition,
these models lack an integrated understanding of agency (Brenden M. Lake, 2017). They
may identify people or animals in scenes and label their actions based on visual features, but
cannot fundamentally distinguish between an entity acting with intention and one merely fol-
lowing physical dynamics. Even state-of-the-art multi-agent reinforcement learning (MARL)
algorithms typically rely on hard-coded agent representations rather than discovering them
from sensory data, limiting their generalization capabilities. How might we formalize the
computations that transform visual input into representations of agency?

This thesis introduces a variational objective LVAD for unsupervised agent discovery from
visual observations. Based on this objective, we develop a deep conditional variational slot-
based autoencoder, which we call the Variational Agent Discovery (VAD) model. The
VAD model operates directly on high-dimensional visual input, processing pixel data to
learn agent-centric representations—advancing beyond existing approaches that operate on
simplified state representations. By formulating agent discovery as a structured variational
inference problem with latent actions, our model decomposes visual scenes into entity-centric
representations and infers the latent actions that best explain observed state transitions,
distinguishing entities whose behavior follows intentional policies from those governed by
environmental dynamics.

Our VAD model learns agent-centric representations across environments of increasing
complexity and exhibits properties analogous to human cognitive mechanisms. We discover
that individual features within our model’s representations activate consistently across dif-
ferent agents performing the same action—similar to mirror neurons in the primate brain.
Furthermore, the model demonstrates the ability to predict rational action, correctly antic-
ipating that agents will take direct paths to goals when obstacles are removed—paralleling
expectations documented in infant studies of teleological reasoning and agent perception. By
formulating agent discovery as a variational inference problem, we not only learn meaningful
representations of agents but also provide an auxiliary objective LVAD that improves learning
efficiency in multi-agent reinforcement learning settings.

1.1 Cognitive Neuroscience Motivation
From a cognitive and computational neuroscience standpoint, we seek to propose a quanti-
tative, falsifiable hypothesis about agent perception in the form of an optimization objective.
Recent work by Cao and Yamins (2021a,b) suggests that understanding neural mechanisms
requires computational models that both explain how the brain processes information and are
understandable to humans—what they term “cognitive manipulability.” Their Contravari-
ance Principle suggests that models tackling realistic complex tasks without oversimplifica-
tion are more likely to discover solutions similar to those used by biological systems.

While several computational models of agency perception exist, including Gao et al.
(2019), Baker et al. (2009), and Ullman et al. (2009), these models typically operate on
simplified symbolic inputs rather than raw perceptual data. By formulating agent discovery
as a variational inference problem that operates directly on high-dimensional visual data, we
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propose an optimization objective LVAD that addresses the transformation of visual input
into agent representations without relying on pre-processed information, creating a testable
hypothesis about the computational principles underlying agency perception.

1.2 Reinforcement Learning Motivation
From a machine learning perspective, agent-centric representations can improve multi-agent
reinforcement learning algorithms. Current MARL approaches face a limitation: they typ-
ically rely on privileged information about other agents. Algorithms often assume direct
access to other agents’ states or explicitly encode agent representations within the obser-
vation space. This approach simplifies training but undermines generalization when the
number of agents changes or when agents adopt novel behaviors.

Agents equipped with the ability to autonomously model other agents could adapt more
readily to novel multi-agent scenarios. Rather than encoding fixed assumptions about other
agents’ capabilities or goals, such algorithms would flexibly construct models of previously
unseen agents through observation alone. This would enable generalization to environments
with different numbers of agents or agents with different capabilities—a crucial requirement
for deploying autonomous policies in open-world settings.

Furthermore, agent-centric world models may improve sample efficiency in MARL. By
explicitly modeling other agents as entities with goals and policies rather than as part of the
environmental dynamics, learning algorithms could make more accurate predictions about
future states, enabling more effective planning and exploration.

1.3 Agent Discovery as Variational Inference
In this thesis, we introduce a probabilistic approach for discovering agent representations
from visual observations without supervision.

Our key assumption is that agent behavior involves decision-making processes that can
be modeled through latent action variables. Unlike physical objects whose transitions follow
deterministic laws, agents generate actions from internal policies that can be inferred from
observations. By explicitly modeling these latent actions and learning to infer them from
state transitions, our approach creates an inductive bias toward learning representations of
entities whose behavior exhibits agency.

Mathematically, we formalize this intuition through variational inference. The true tran-
sition probability between entity states requires marginalizing over all possible unobserved
actions—an intractable computation. We address this through a variational lower bound
on the marginal likelihood, introducing an approximate posterior in our VAD model that
estimates the most likely actions given observed transitions.

Our experimental results demonstrate the VAD model’s capability to learn agent rep-
resentations across environments of increasing complexity—from single-agent navigation in
grid worlds to two-agent cooperative tasks and three-agent competitive scenarios. Moreover,
the model learns consistent agent representations that generalize to novel scenarios and novel
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agents, and when our LVAD objective is incorporated into reinforcement learning policies, it
improves their sample efficiency.

Key Contributions

1. A computational objective LVAD for agent discovery formulated as a variational
inference problem that operates directly on visual input, providing a quantitative,
falsifiable optimization objective.

2. A VAD model that successfully learns agent-centric representations across en-
vironments of increasing complexity and demonstrates generalization to novel
agents, goals, and environmental configurations.

3. Evidence of mirror-neuron-like representational properties, where specific fea-
tures in the VAD model activate consistently across different agents performing
the same actions.

4. Teleological-like reasoning capability, where the VAD model predicts rational
actions in novel scenarios similar to expectations in human infant studies.

5. Improved sample efficiency in multi-agent reinforcement learning when our LVAD
objective is incorporated as an auxiliary task.

In the following chapters, we begin by reviewing foundations of agent perception theories,
object-centric representation learning, reinforcement learning, and variational inference. We
then derive our variational agent discovery objective LVAD and describe the implementation
of our VAD model. Finally, we present experimental results demonstrating the model’s
capabilities across a range of environments and tasks.

This thesis aims to inspire the development of artificial agents who can navigate the social
world with flexibility and intuition, perceiving and understanding other agents as naturally
as humans do.



Chapter 2

Related Works

2.1 Foundations of Agency Perception in Cognitive Sci-
ence

What constitutes an agent, and how do we recognize agency in our environment? These
questions have intrigued scientists across disciplines for decades. For humans, the ability to
identify agents appears effortless and automatic. We readily distinguish between a falling
rock (a passive physical entity) and a descending eagle (an intentional agent), despite both
exhibiting downward motion trajectories. This perceptual capacity holds immense adaptive
value: accurately representing agents in our environment enables us to predict their behav-
ior, avoid threats, and engage in social interaction. The scientific investigation of agency
perception has progressed through systematic exploration of when humans perceive agency,
what visual cues trigger it, and how this capacity develops.

12
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Key Terminology

In cognitive science literature, agency perception encompasses several related phenom-
ena characterized by distinct processing levels:
Animacy perception refers to the detection that an entity is alive and self-propelled.
The perceptual signatures of animacy include self-initiated movement, violations of
Newtonian physics (like sudden stops or direction changes), and movement that lacks
obvious external causes. This represents the most basic level of agency detection and
can be triggered by simple motion cues.
Goal attribution involves inferring that an entity’s movements are directed toward
achieving specific outcomes. This builds upon animacy perception but goes further,
as it requires understanding that movements aren’t just self-generated but purposeful.
Key cues include efficiency of movement relative to environmental constraints and
persistent orientation toward specific targets.
Intentionality extends goal attribution to include the inference that an agent has
internal mental states driving its behavior. This involves representing an entity as
capable of making decisions among alternative actions based on its goals and beliefs
about the environment.
These concepts form a processing hierarchy, where higher levels build upon but go
beyond the information provided by lower levels. This thesis focuses primarily on
the first two levels, examining how visual processing mechanisms extract agency cues
from motion patterns and how these support the attribution of goals and prediction
of behavior.

2.1.1 Classic Experimental Paradigms
The scientific investigation of agency perception has progressed through systematic ex-
ploration of several fundamental questions. This section reviews the classic experimental
paradigms that have shaped our understanding of how humans detect and interpret agency
from visual motion.

When do humans perceive agency from visual input?

The foundational work on agency perception was conducted by Heider and Simmel (1944),
who presented participants with a simple animation depicting geometric shapes—two trian-
gles and a circle—moving around a rectangular enclosure. Despite the minimalist nature of
these stimuli, participants spontaneously described the shapes as animate entities engaged
in intentional interactions, attributing to them emotions, goals, and even personality traits.
Viewers typically characterized the large triangle as “bullying” or “chasing” the smaller
shapes, and described the small triangle and circle as “hiding” or “escaping.” This strik-
ing demonstration revealed that humans do not require biological features (such as faces
or limbs) to perceive agency; motion patterns alone can trigger rich social interpretations.
Indeed, it’s a captivating animation, despite being so visually minimalistic.

The power of these simple displays to evoke consistent social interpretations has made
them an enduring paradigm in psychology. Heider and Simmel’s original study demonstrated

https://youtu.be/sx7lBzHH7c8?si=G1KONRii7K7nTXuS&t=4
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that specific motion patterns—such as contingent movement, apparent pursuit, and coordi-
nated actions—are sufficient to trigger robust perceptions of animacy, intentionality, and
even complex social relationships. This work established that agency perception can be stud-
ied systematically using controlled stimuli, opening the door to more detailed investigations
of the specific visual cues that drive this phenomenon.

What specific motion patterns and cues trigger agency perception?

Following Heider and Simmel’s pioneering work, researchers have systematically investigated
the specific motion characteristics that elicit perceptions of agency. Tremoulet and Feldman
(2000) demonstrated that even a single dot moving across a screen can appear animate when
it changes direction or speed in certain ways, suggesting that self-propulsion serves as a basic
cue for animacy perception.

Research on perceived chasing has been particularly informative about the specific param-
eters that influence agency detection. Gao et al. (2009) conducted systematic psychophysical
studies of chasing perception, showing that detection follows a U-shaped function relative
to directness of pursuit. When a “wolf”shape pursues a “sheep” with slight deviations from
a perfect direct path, chasing is most easily perceived. Counterintuitively, perfectly di-
rect pursuit and highly variable pursuit both reduced participants’ ability to detect chasing,
suggesting that agency perception is tuned to specific patterns of motion that characterize
natural predator-prey interactions.

Dittrich and Lea (1994) identified several features that contribute to the perception
of intentionality in motion, including acceleration, changes in direction related to another
object’s position, and contingent responsiveness. Similarly, Gao and Scholl (2010) demon-
strated the “wolfpack effect,” showing that when multiple objects consistently orient toward
a target (like a pack of predators), viewers perceive intentionality even when the objects’
actual trajectories are entirely random. These findings suggest that orientation cues serve
as a powerful trigger for agency perception, independent of actual motion trajectories.

Collectively, these studies have identified several key motion cues that reliably trigger
agency perception: self-propulsion, non-Newtonian changes in direction or speed, orientation
toward targets, contingent responsiveness to other objects, and patterns of pursuit or evasion.
Importantly, these cues appear to operate in a fast, automatic manner that is resistant to
conscious override, suggesting they may be processed by specialized perceptual mechanisms.

How universal and developmentally early is agency perception?

A third major question concerns the universality and developmental trajectory of agency per-
ception. Cross-cultural studies have investigated whether the tendency to perceive agency
from motion cues varies across human populations. Barrett et al. (2005) found consistent in-
terpretations of intention from motion cues across diverse cultures, including hunter-gatherer
societies with minimal exposure to Western media. Similarly, Morris and Peng (1994) demon-
strated similar attributions of agency across American and Chinese observers. These findings
suggest that the perception of animacy from motion might be a universal human capacity,
though cultural factors may influence the specific intentions attributed (Rimé et al., 1985).

Developmental research has shown that agency perception emerges remarkably early
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in human development. Simion et al. (2008) demonstrated that even 2-day-old newborns
show a preference for biological motion in point-light displays, can discriminate between
different motion patterns, and show orientation-specific responses. By 5 months of age,
infants develop more sophisticated processing of biological motion, including sensitivity to
specific biomechanical properties like joint rigidity in point-light walker displays (Bertenthal
et al., 1987). This sensitivity is orientation-specific, suggesting specialized processing of
upright human figures. As infants develop further, by 6-12 months, they attribute goals to
moving agents based on their patterns of motion (Gergely, 1995; Csibra, 1999) and expect
agents to take efficient paths toward goals (Gergely and Csibra, 2003).

Frankenhuis and Barrett (2013) have proposed that early action understanding may be
centered on domain-specific action schemas that guide attention toward domain-relevant
events. Examining chasing as a case study, they suggest that natural selection may have
built “islands of competence” in early action understanding that serve as foundations for
future learning and development. This evolutionary developmental perspective suggests
that learning mechanisms may have evolved to exploit recurrent properties of fitness-relevant
domains, with specialized attention to particular kinds of motion patterns that have been
evolutionarily significant.

The early emergence and cross-cultural consistency of agency perception raises impor-
tant questions about the underlying mechanisms that support this capacity. How do we
transform simple motion cues into rich perceptions of agency? What processes enable this
transformation? The next section examines theoretical frameworks that attempt to address
these questions.

2.1.2 Theoretical Frameworks for Agency Perception
Building on the experimental paradigms reviewed in the previous section, we now examine
theoretical frameworks that explain the mechanisms underlying agency perception. These
frameworks address how the brain transforms motion cues into representations of agents
with goals and intentions.

What mechanisms underlie our perception of agency?

Agency perception can be understood as operating across multiple processing levels, from
rapid perceptual detection to more sophisticated cognitive inference. These levels form a
processing hierarchy that transforms visual input into increasingly abstract representations:

Perceptual Detection of Agency Cues At the most basic level, specific motion pat-
terns automatically trigger agency detection. Scholl and Gao (2013) argue that this occurs
through specialized visual processing mechanisms sensitive to motion signatures such as self-
propulsion, acceleration changes, and contingent responsiveness. This processing is rapid,
automatic, and operates directly on low-level visual features without requiring conscious
inference.

Attribution of Goals and Intentions Building on perceptual detection, we attribute
goals and intentions to perceived agents. Dennett (1988) characterized this as adopting the
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“intentional stance”—a predictive strategy in which we treat an entity as a rational agent
with goals and intentions. According to Dennett, this stance is adopted when it enables
more accurate and efficient behavioral predictions than alternative strategies.

Research with infants supports this distinction between lower-level agency detection and
higher-level goal attribution. Woodward (1998) demonstrated that 6-month-old infants at-
tribute goals to human hands but not to mechanical claws performing identical movements,
suggesting that goal attribution builds upon, but goes beyond, mere motion analysis. Simi-
larly, Johnson et al. (1998) showed that 12-month-olds follow the ’gaze’ of a novel amorphous
object that has facial features or behaves contingently, but not when it lacks both character-
istics. This indicates that infants are sensitive to specific morphological and behavioral cues
when attributing agency and intentionality to objects..

Representation of Mental States While not the focus of this thesis, it’s worth noting
that agency perception provides the foundation for more complex social-cognitive processes
like theory of mind—the representation of others’ beliefs, desires, and other mental states
(Baron-Cohen et al., 1985; Wimmer and Perner, 1983). While early theories suggested theory
of mind emerges suddenly around age four (Wellman et al., 2001), recent work indicates
that more implicit forms may exist earlier in development (Onishi and Baillargeon, 2005;
Southgate et al., 2007), suggesting a more continuous developmental trajectory from basic
agency perception to sophisticated mental state reasoning.

These processing levels interact and mutually constrain each other—perceptual detec-
tion influences higher-level attributions, while conceptual knowledge can shape what motion
patterns are detected as agent-like.

What evidence suggests agency detection operates at a perceptual level?

A substantial body of research supports the view that the initial detection of agency involves
specialized perceptual processing rather than solely higher-level reasoning. Scholl and Gao
(2013) marshal five lines of evidence supporting this “social vision” interpretation:

Phenomenology of Visual Experience Agency perception has an immediate, com-
pelling quality similar to other visual percepts. Just as we directly “see” color or depth
rather than inferring them, we directly “see” animacy and intentionality in appropriately
structured motion displays. This phenomenology persists even when observers know the dis-
plays consist only of simple geometric shapes, suggesting a level of cognitive impenetrability
characteristic of perceptual processes.

Sensitivity to Subtle Visual Parameters Agency perception exhibits sensitivity to
fine-grained visual parameters in ways that would be difficult to explain through deliberate
reasoning. For example, Gao et al. (2009) demonstrated that chasing detection follows
a U-shaped function relative to pursuit directness, with optimal detection occurring with
slight deviations rather than perfect pursuit. This nuanced psychophysical function suggests
perceptual tuning to specific motion signatures rather than categorical judgments.
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Implicit Influences on Visual Performance Agency perception automatically influ-
ences visual performance even when irrelevant or detrimental to the task at hand. Gao
and Scholl (2010) demonstrated the “wolfpack effect” where performance was significantly
impaired when darts pointed toward a user-controlled object compared to identical motion
trajectories with different orientations. This occurred despite explicit instructions to ignore
orientation and even when participants were fully informed about the effect beforehand.
Additional studies by Van Buren et al. (2016) and Pratt et al. (2010) have shown that per-
ceived animacy automatically captures visual attention, further demonstrating its automatic
influence on visual processing.

Activation of Visual Brain Areas Neuroimaging studies have identified selective acti-
vation of visual processing regions during agency perception. Gao et al. (2012) demonstrated
that the motion-selective region MT+ shows differential activation in response to displays
that evoke percepts of animacy, even when controlling for lower-level motion parameters.
This suggests that agency detection involves specialized visual processing rather than only
higher-level reasoning areas (more on this later in Ch. 2.2). Schultz et al. (2005) similarly
found that posterior STS activation correlates with parametric manipulations of perceived
animacy, further supporting the involvement of specialized visual processing.

Interaction with Other Visual Processes Agency perception interacts with other vi-
sual processes in ways characteristic of perceptual rather than cognitive phenomena. New
et al. (2010) demonstrated that animacy perception operates even in individuals with autism
spectrum disorders who show impairments in higher-level social cognition, suggesting its oper-
ation at a more basic perceptual level. Meyerhoff et al. (2014) showed that perceived chasing
influences multiple object tracking performance even under high cognitive load, consistent
with automatic perceptual processing.

These lines of evidence collectively suggest that the detection of agency from visual cues
involves specialized perceptual processing that is fast, automatic, and sensitive to specific
motion parameters.

Is goal attribution perceptual or cognitive?

An intriguing question that extends beyond basic agency detection is whether goal attribu-
tion itself might operate partly at a perceptual level rather than being entirely a higher-level
cognitive process. This question challenges the traditional distinction between perception
(detecting agents) and attribution (inferring goals).

Gao et al. (2009) found that the perception of chasing is automatic and difficult to
suppress, suggesting that not just agency detection but also the specific attribution of pursuit
goals might operate at a perceptual level. Similarly, Scholl and Tremoulet (2000) showed that
even complex social percepts like “stalking” versus “following” might be processed through
specialized perceptual mechanisms.

More recently, Rolfs et al. (2013) demonstrated adaptation effects for causal perception
that are retinotopically specific, suggesting that even seemingly high-level properties like
causality may be encoded at a visual processing level. If causality can be perceptual, it
raises the possibility that goal attribution might similarly have perceptual components.
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The “perceptual animacy” account proposed by Scholl and Gao (2013) suggests that the
distinction between perception and attribution may be more fluid than traditionally assumed.
Certain forms of attribution—particularly those related to basic goals like chasing, avoiding,
or helping—may operate through specialized perceptual mechanisms rather than requiring
explicit reasoning.

How do perception and attribution interact in predicting agent behavior?

The relationship between agency perception and goal attribution enables us to predict agent
behavior based on attributed goals and environmental constraints. The teleological stance
theory, proposed by Gergely and Csibra (2003), provides a framework for understanding this
predictive capacity.

According to this theory, observers interpret actions through a three-part representa-
tional structure connecting: (1) the observed action, (2) the future goal state, and (3) the
situational constraints. This structure enables both goal attribution (inferring goals from ob-
served actions and constraints) and action prediction (anticipating actions based on known
goals and constraints). Central to this framework is the principle of rational action—the as-
sumption that agents take the most efficient path to achieve their goals given environmental
constraints.

Csibra (1999) demonstrated that infants attribute goals to agents based on the rationality
of their actions rather than their perceptual features. When observing an agent taking
an unusual path to reach a target, infants interpreted this as rational if an obstacle was
present but showed surprise if the same path was taken with no obstacle. This suggests that
rationality evaluation guides goal attribution, illustrating how attribution builds upon but
goes beyond mere perceptual detection.

In 4.1.5, we closely model this experiment, and show that our model trained with our
variational objective accurately predicts that agents will take direct paths to goals when
obstacles are removed—mirroring the expectations documented in infant studies.
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2.2 Neuroscientific Basis for Agency Perception
Neuroscience research has identified neural systems that process social and intentional infor-
mation, with many of these systems also contributing to non-social cognitive functions. This
section explores the key neural substrates and clinical evidence informing our understanding
of agency perception.

2.2.1 Neural Pathways Contributing to Agency Perception
Multiple neural systems support different aspects of agent perception, from detecting bio-
logical motion to inferring goals and mental states, though many of these systems also serve
broader cognitive functions.

The Social Brain Network

The Superior Temporal Sulcus (STS) plays a particularly critical role in processing
biological motion and intentional action. This region, located along the lateral surface of the
temporal lobe, activates selectively when observing goal-directed movements and biological
motion patterns (Frith, 2007). Allison et al. (2000) demonstrated that the posterior STS
(pSTS) responds preferentially to biological motion compared to non-biological motion, even
when the stimuli are highly simplified point-light displays (Johansson, 1973). Similarly, Saxe
et al. (2004) found that the pSTS is specifically activated when observing intentional actions.
Importantly, Gao et al. (2012) found that the right pSTS shows dissociable patterns of
activity for animacy versus intentionality, suggesting functional specialization within this
region for different aspects of agent perception.

Blakemore et al. (2003) demonstrated a key neural dissociation between perceiving phys-
ical and social causality. Using stimuli similar to Michotte (1964)’s launching displays, they
found distinct patterns of brain activation when observers perceived social interaction (con-
tingent motion) versus physical causation (launching). Social perception recruited regions
including the STS, while physical causality activated areas associated with visual motion
processing. This dissociation suggests that the brain processes social and physical events
through partially separate pathways, although these pathways may rely on similar compu-
tational principles operating on different types of input.

The STS does not operate in isolation but functions as part of a broader network that
Frith (2007) termed the “social brain,” building on earlier work by Brothers (2002). As
Frith emphasizes, many components of this network are not exclusively dedicated to social
cognition but rather perform computations that are particularly useful for social interaction
while also serving other cognitive functions.

The Temporal Parietal Junction (TPJ) is activated during perspective-taking tasks
and when inferring others’ mental states or false beliefs (Saxe and Kanwisher, 2003; Frith,
2007). However, the TPJ is also implicated in non-social attentional processes and has
been characterized as playing a domain-general role in reorienting attention (Corbetta et al.,
2008). The Medial Prefrontal Cortex (MPFC) constitutes another critical component,
playing a key role in representing others’ mental states and intentions (Mitchell et al., 2006;
Amodio and Frith, 2006; Frith, 2007). Frith notes that the anterior rostral MPFC may have
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a specialized role in handling communicative intentions and second-order representations
of mental states (representing someone else’s representation of our mental state). Recent
work by Schurz et al. (2014) suggests that MPFC involvement in mentalizing tasks reflects
domain-general processes related to scene construction and self-projection rather than social
cognition specifically.

An important but often overlooked component of the social brain is the Temporal Poles.
As Frith describes, these regions function as “convergence zones” where information from
different modalities comes together to define unique individuals and situations (Frith, 2007).
The temporal poles store our rich social knowledge—facts about specific people, appropriate
behaviors for different situations, and how emotions affect behavior in various contexts. This
stored knowledge allows us to apply our past social experiences to new situations. However,
this integrative function applies to both social and non-social semantic knowledge (Patterson
et al., 2007).

The Amygdala’s Role in Social and Emotional Processing

The Amygdala also plays a crucial role in social perception, though as Frith explicitly
emphasizes, its function is not exclusively social. The amygdala is involved in attaching
emotional value to stimuli through conditioning processes (Frith, 2007; Adolphs, 2010). It
responds to faces rated as untrustworthy and is implicated in the automatic, implicit aspects
of prejudice. The amygdala’s role in recognizing expressions of fear likely stems from its more
general function in associating stimuli with potential threats. This perspective suggests that
while the amygdala contributes significantly to social cognition, it does so through domain-
general mechanisms that apply equally to social and non-social stimuli.

2.2.2 Mirror Neurons
A particularly intriguing neural system implicated in agency perception is the mirror neu-
ron system. First discovered in macaque monkeys (Rizzolatti et al., 1996), mirror neurons
fire both when an animal performs an action and when it observes another agent performing
the same action. In humans, homologous mirror systems have been identified in the premo-
tor cortex and inferior parietal lobule (Molenberghs et al., 2012). This system may provide
a neural mechanism for action understanding through motor simulation: by activating our
own motor representations when observing others’ actions, we can understand those actions
“from the inside” (Rizzolatti and Craighero, 2004).

Cross-Species and Cross-Domain Generalization The mirror neuron system demon-
strates remarkable flexibility across different agent types. Gallese et al. (1996) first showed
that monkey mirror neurons respond when monkeys observe humans performing grasping
actions, indicating cross-species mirroring. Building on this, Buccino et al. (2004) found
that the human mirror system activates when observing actions performed by non-human
species, though with varying intensity depending on the similarity to human actions. For
actions within the human motor repertoire (like a monkey’s lip-smacking), activation was
stronger than for actions outside it (like a dog’s barking), suggesting that mirror responses
are tuned to actions that map onto the observer’s own motor capabilities.
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Intriguingly, Gazzola et al. (2007) demonstrated that the human mirror system can even
generalize to robotic actions. When participants observed a robotic arm performing goal-
directed actions, their premotor and parietal mirror areas showed activation comparable to
when observing human actions. This suggests that the goal or intentional structure of an
action may be more critical for mirror system engagement than the biological nature of the
agent performing it.

White et al. (2014) further supported this finding using transcranial magnetic stimulation,
showing motor facilitation effects when humans observed actions performed by non-human
animals (rats and elephants) and robotic arms. In some cases, observing non-human animals
actually produced stronger motor resonance than observing humans, indicating complex
tuning that may be sensitive to the distinctive mechanics of different agents’ actions.

Action-Specific Encoding An important aspect of mirror neurons is their action speci-
ficity. Rather than responding to all observed movements, mirror neurons show selective
activation for particular actions. For example, different populations of mirror neurons in
macaque F5 respond specifically to grasping, holding, or tearing actions. This action-specific
encoding allows for precise mapping between observed and executed actions, facilitating de-
tailed understanding of others’ behaviors.
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Connection to Our Computational Model

Theoretical work by Kilner et al. (2007b,a), Frith (2007), and Friston et al. (2011)
has proposed that the mirror neuron system can be understood within a predictive
coding framework based on empirical Bayesian inference. According to this view, the
mirror system helps us infer the intentions behind observed actions by minimizing
prediction errors across the cortical hierarchy. This addresses a fundamental problem
in action understanding: identical movements can serve different intentions, making
the mapping from observation to intention ambiguous. Through predictive coding,
the brain can infer the most likely cause of an observed movement by generating
predictions at multiple levels and updating these predictions based on error signals.
Our computational VAD model (described in Ch 3.4) addresses a similar inference
challenge—determining the latent causes (actions) that explain observed entity state
transitions. Both our variational approach and predictive coding frameworks minimize
prediction errors, though through different mathematical formalisms. Our LVAD objec-
tive contains a reconstruction term that encourages accurate prediction of state tran-
sitions given inferred actions, which conceptually aligns with the error-minimization
principle in predictive coding.
Interestingly, our VAD model’s learned representations exhibit mirror neuron-like prop-
erties analogous to those observed in biological systems. As demonstrated in Sec-
tion 4.3, when analyzing slot vector activations across different agents performing the
same actions, we found specific feature dimensions (e.g., F57 for rightward movement,
F107 for upward movement) that consistently activate across different agent repre-
sentations. This suggests our model develops a shared neural code for actions that
generalizes across entities, similar to biological mirror neurons. Furthermore, like the
cross-species generalization capabilities observed by Gazzola et al. (2007) and White
et al. (2014), our VAD model successfully generalizes its action understanding to novel
agents not seen during training, maintaining high prediction accuracy for both familiar
and novel entities.

2.2.3 Developmental Trajectories of Social Perception
The developmental trajectory of social perception systems offers insights into how these neu-
ral networks emerge. Grossman et al. (2000) found that sensitivity to biological motion in
the STS emerges early but continues to refine with experience. This aligns with evidence that
basic biological motion detection appears in early infancy (Simion et al., 2008) but undergoes
substantial development through childhood. Similar developmental patterns have been ob-
served for mirror neuron responses, suggesting parallel maturation of interconnected systems
for social perception. The question of how much of this neural architecture is innately spec-
ified versus shaped by experience remains debated and has implications for computational
modeling approaches that aim to recapitulate the development of these systems.
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2.2.4 Clinical Evidence
Neuropsychological evidence from clinical populations offers a complementary perspective
on the neural basis of agency perception. In particular, studies of individuals with autism
spectrum disorder (ASD) and amygdala damage have provided insights into how different
neural systems contribute to social perception.

Autism Spectrum Disorders

Individuals with Autism Spectrum Disorder (ASD) often show altered patterns of so-
cial perception, though the specifics vary considerably across the spectrum. Abell et al.
(2000) found that children with autism attributed fewer mental states to animated geo-
metric shapes in Heider-Simmel-type displays compared to typically developing children.
Similarly, Klin (2000) developed the Social Attribution Task, which revealed that individu-
als with high-functioning autism used significantly fewer social attributions when describing
such animations. Rutherford et al. (2006) demonstrated that children with autism showed
reduced perception of animacy from motion cues, suggesting difficulties with the perceptual
foundations of agency detection.

Amygdala Lesion Studies

Studies of individuals with amygdala damage provide further evidence for the role of this
structure in social perception. The amygdala, an almond-shaped structure in the medial
temporal lobe, plays a key role in emotional processing and social evaluation. Heberlein
and Adolphs (2004) found that a patient with bilateral amygdala damage showed severely
impaired spontaneous anthropomorphizing when viewing geometric shapes in motion, despite
preserved general intelligence and basic motion perception. This suggests that the amygdala
may be critical for the social interpretation of motion cues. Similarly, Adolphs et al. (1998)
demonstrated the amygdala’s importance in social judgment, showing that patients with
amygdala damage had difficulty evaluating the trustworthiness of faces, an observation also
highlighted by Frith in his discussion of the amygdala’s role in social cognition.

2.2.5 Advanced Methodological Approaches
Approaches using multivariate pattern analysis (MVPA) in functional neuroimaging
have further refined our understanding of how social information is represented in the brain
(Brooks and Freeman, 2017). Rather than simply localizing social perception to specific
brain regions, MVPA examines the patterns of activity within and across regions, revealing
how social categories, identities, and emotions are encoded. This research has shown that
the neural representations of social agents are structured along meaningful psychological
dimensions (e.g., warmth-competence) and are influenced by both bottom-up perceptual
features and top-down conceptual knowledge.
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2.2.6 Integrative Perspectives
An important insight from Frith’s analysis is that many components of the so-called “social
brain” are not specifically social in function. The amygdala’s role in conditioning, the tem-
poral poles’ function as convergence zones, and the TPJ’s involvement in perspective-taking
all have applications beyond social cognition. What makes these systems crucial for social
understanding is not their exclusive dedication to social processing, but rather their recruit-
ment and coordination in service of the particularly complex demands of social interaction.
As Frith suggests, it may be that social complexity has driven these cognitive functions
to higher levels of sophistication. This domain-general perspective has gained further sup-
port from recent meta-analyses showing substantial overlap between brain regions activated
during social and non-social tasks (Van Overwalle, 2009; Spunt and Adolphs, 2015).
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2.3 A Primer on Variational Inference
Variational inference provides a powerful mathematical framework for approximating com-
plex probability distributions, serving as the theoretical foundation for many approaches to
probabilistic modeling with latent variables. This section introduces the key concepts un-
derlying variational methods, with a focus on their application to learning structured latent
variable models from observations.

2.3.1 The Challenge of Posterior Inference
Let’s begin with a fundamental problem in probabilistic modeling: given observed data x,
how can we infer the underlying latent variables z that might have generated it? In Bayesian
statistics, we are interested in computing the posterior distribution p(z|x), which tells us
how likely different values of z are, given our observation x.

Using Bayes’ rule, we can write this posterior as:

p(z|x) = p(x|z)p(z)
p(x)

(2.1)

Here, p(x|z) is the likelihood model describing how latent variables generate observations,
p(z) is our prior belief about the latent variables before seeing any data, and p(x) is the
marginal likelihood (or evidence) of observing x under our model.

The denominator p(x) =
∫
p(x|z)p(z)dz requires integrating over all possible configura-

tions of latent variables—a computation that quickly becomes intractable as the dimension-
ality of z increases or when the likelihood model is complex. This integration challenge is
the central problem that variational methods address.

2.3.2 Variational Inference: An Optimization Approach
Rather than computing the posterior exactly, variational inference reformulates inference as
an optimization problem. The core idea is to approximate the true posterior p(z|x) with a
simpler distribution q(z|x) from a tractable family, then find the member of this family that
most closely resembles the true posterior.

The quality of this approximation is measured using the Kullback-Leibler divergence:

DKL(q(z|x)∥p(z|x)) = Eq(z|x)

[
log q(z|x)

p(z|x)

]
(2.2)

This divergence quantifies the information lost when using q(z|x) to approximate p(z|x).
Our goal is to find the q(z|x) that minimizes this divergence.
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Figure 2.1: The posterior inference challenge in variational methods. (a) The prior distribu-
tion p(z) represents our belief about latent variables before seeing data. (b) The likelihood
function p(x|z) defines how latent variables generate observations for different values of z. (c)
The true posterior distribution p(z|x) (solid blue line) arises from combining the prior and
likelihood, but is often intractable to compute exactly. Variational inference approximates
this with a simpler distribution q(z|x) (dashed dark blue line). (d) In higher dimensions,
this approximation challenge involves minimizing the KL divergence between the true and
approximate posteriors, visualized here with contours and a heatmap in a 2D latent space.

Key Insight: From Sampling to Optimization

Variational inference transforms a difficult sampling problem into an optimization
problem:

• Instead of sampling from the intractable p(z|x)

• We find a simpler distribution q(z|x) that approximates it

• The approximation is optimized to minimize the KL divergence

• This allows us to leverage efficient optimization techniques

2.3.3 Deriving the Evidence Lower Bound
While we would like to minimize DKL(q(z|x)∥p(z|x)) directly, we cannot compute it without
knowing the true posterior. Let’s expand this expression to see if we can find a more tractable
objective:

DKL(q(z|x)∥p(z|x)) = Eq(z|x)

[
log q(z|x)

p(z|x)

]
(2.3)

= Eq(z|x) [log q(z|x)− log p(z|x)] (2.4)

= Eq(z|x)

[
log q(z|x)− log p(x|z)p(z)

p(x)

]
(2.5)

= Eq(z|x) [log q(z|x)− log p(x|z)− log p(z) + log p(x)] (2.6)
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Since p(x) does not depend on z, we can take it out of the expectation:

DKL(q(z|x)∥p(z|x)) = Eq(z|x) [log q(z|x)− log p(x|z)− log p(z)] + log p(x) (2.7)

Rearranging, we get:

log p(x)−DKL(q(z|x)∥p(z|x)) = Eq(z|x) [log p(x|z) + log p(z)− log q(z|x)] (2.8)

= Eq(z|x) [log p(x|z)]− Eq(z|x)

[
log q(z|x)

p(z)

]
(2.9)

= Eq(z|x) [log p(x|z)]−DKL(q(z|x)∥p(z)) (2.10)

This final expression is the Evidence Lower Bound (ELBO), which we denote as L(q):

L(q) = Eq(z|x) [log p(x|z)]−DKL(q(z|x)∥p(z)) (2.11)
From our derivation, we can see that:

log p(x) = L(q) +DKL(q(z|x)∥p(z|x)) (2.12)
Since the KL divergence is always non-negative, L(q) provides a lower bound on log p(x),

hence the name “Evidence Lower Bound.” Moreover, this bound becomes tight (equal to
log p(x)) when q(z|x) = p(z|x), i.e., when our approximation perfectly matches the true
posterior.

2.3.4 Understanding the ELBO Components
The ELBO consists of two distinct terms, each with an intuitive interpretation:

The Two Faces of the ELBO

L(q) = Eq(z|x) [log p(x|z)]︸ ︷︷ ︸
Reconstruction term

−DKL(q(z|x)∥p(z))︸ ︷︷ ︸
Regularization term

(2.13)

Reconstruction Term Regularization Term
• Encourages finding latent variables
that explain the data well

• Prevents overfitting to specific latent
configurations

• Maximized when samples from
q(z|x) lead to accurate reconstructions

• Keeps the approximate posterior
close to the prior

• Focuses on modeling the data • Controls the complexity of the model

These terms create a natural trade-off: the reconstruction term pushes q(z|x) to concen-
trate on values of z that explain the data well, while the regularization term pulls q(z|x)
toward the simpler prior distribution. This balance is crucial for learning meaningful latent
representations.
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Figure 2.2: Visualizing the Evidence Lower Bound (ELBO). Top left: During training, the
ELBO (dark blue) increases toward the log evidence (light blue), with their gap representing
the KL divergence. Top right: The ELBO creates a landscape in latent space with higher
values (lighter blue) in regions that better explain the data. Bottom: The ELBO decompo-
sition shows how it balances the reconstruction term (light blue) against the negative KL
term (dark blue). The combined ELBO (darkest blue line) represents a compromise between
these competing objectives, with arrows indicating how each term pulls the optimization in
different directions.
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2.3.5 Deep Variational Inference: Autoencoders
Deep Variational Autoencoders (VAEs) (Kingma and Welling, 2014; Rezende et al., 2014)
apply the variational inference framework to settings where both the generative model p(x|z)
and the inference model q(z|x) are parameterized by neural networks. In the standard VAE,
we assume a simple prior on the latent variables, typically a standard Gaussian p(z) =
N (0, I).

The approximate posterior is usually modeled as a Gaussian with parameters produced
by an encoder network:

qϕ(z|x) = N (z|µϕ(x),Σϕ(x)) (2.14)
where ϕ represents the parameters of the encoder. The generative model (decoder) with
parameters θ then maps latent variables back to the data space:

pθ(x|z) = f(x; gθ(z)) (2.15)

where f is an appropriate probability distribution (e.g., Gaussian for continuous data or
Bernoulli for binary data) and gθ is a neural network transforming z into the parameters of
this distribution.

The ELBO for a VAE can thus be written as (Higgins et al., 2017):

L(θ, ϕ) = Eqϕ(z|x) [log pθ(x|z)]−DKL(qϕ(z|x)∥p(z)) (2.16)

With Gaussian assumptions, the KL divergence term has a closed-form expression (Do-
ersch, 2016):

DKL(N (µ,Σ)∥N (0, I)) =
1

2

(
tr(Σ) + µTµ− k − log det(Σ)

)
(2.17)

where k is the dimensionality of z.

2.3.6 The Reparameterization Trick
To optimize the ELBO using gradient-based methods, we need to compute gradients of the
expectation Eqϕ(z|x) [log pθ(x|z)] with respect to ϕ. This presents a challenge because the
distribution qϕ(z|x) itself depends on ϕ.

The reparameterization trick addresses this by reformulating sampling from qϕ(z|x) as
a deterministic transformation of a fixed noise distribution. For a Gaussian qϕ(z|x) =
N (µϕ(x),Σϕ(x)), we can write:

z = µϕ(x) + Σ
1/2
ϕ (x) · ϵ, ϵ ∼ N (0, I) (2.18)

This allows us to rewrite the expectation as:

Eqϕ(z|x) [log pθ(x|z)] = Eϵ∼N (0,I)

[
log pθ(x|µϕ(x) + Σ

1/2
ϕ (x) · ϵ)

]
(2.19)

Now the expectation is taken with respect to a fixed distribution that doesn’t depend on
ϕ, making it possible to pass gradients through the sampling operation. This enables end-
to-end training of both the encoder and decoder networks using stochastic gradient descent.
Later we will explore other reparameterization tricks, such as categorical reparameterization
with the Gumbel-Softmax (Fig. 3.2) trick.
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Figure 2.3: Variational Autoencoder Latent Space Representation. Left: Original input
images from the MNIST dataset. Middle: The 2D projection of the latent space shows how
different digit classes form clusters, with concentric circles indicating the standard normal
prior distribution. The color-coded points represent different digit classes encoded in the
latent space. Right: Reconstructed images show some loss of detail compared to the inputs,
illustrating the information bottleneck created by the low-dimensional latent representation.
The central density in the latent space represents the encoded distribution of digits.

2.3.7 Practical Applications and Extensions
The variational inference framework we’ve described extends naturally to a variety of more
complex models and applications. These include conditional variants where we model p(y|x)
rather than just p(x), hierarchical models with multiple layers of latent variables, and tem-
poral models that capture dynamics over time.

The mathematical principles remain the same: we define a model that captures our
beliefs about how latent variables generate observations, then use variational methods to
approximate the posterior distribution over these latent variables. The ELBO provides
a tractable objective that balances reconstruction accuracy against the complexity of the
latent representation.

This framework will be particularly valuable as we move toward modeling the behavior
of agents, where the latent variables represent unobserved actions or intentions that drive
observable state changes. By applying the tools of variational inference to these agent models,
we can discover latent structure in behavior while maintaining computational tractability.
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2.4 Computational Agent Perception Models
Computational approaches to agent perception have evolved from symbolic models of goal
attribution to integrated architectures for animacy detection. We review this progression
with emphasis on optimization objectives and inference frameworks.

2.4.1 Bayesian Models of Goal Attribution
Baker et al. (2009) pioneered a Bayesian inverse planning framework for action understanding
that formalized how observers infer agents’ goals by inverting a model of rational planning.
Given observed actions and states, their model computes posterior distributions over goals
by assuming agents act approximately rationally to maximize expected utility. Through
maze-world experiments, they demonstrated that humans employ similar inverse reasoning
when attributing goals to moving entities. This approach operates on symbolic state and
action representations, whereas our method processes raw visual observations.

Building upon this foundation, Ullman et al. (Ullman et al., 2009) extended the in-
verse planning framework to multi-agent settings, addressing how people infer social goals
like helping or hindering. Their model introduces a formalism where social agents’ reward
functions depend on other agents’ utilities—positive for helping and negative for hindering.
In controlled experiments with simple 2D animations, their Bayesian model accurately pre-
dicted human judgments of social intentions, outperforming alternatives based on perceptual
cues. While this work shares our intuition that agency is defined by internal decision pro-
cesses, our setting focuses on unsupervised discovery rather than classifying predefined social
relationships.

2.4.2 Cognitive Architecture for Animacy Detection
Moving beyond symbolic models, Gao et al. (2019) proposed a cognitive architecture inte-
grating bottom-up and top-down processes for detecting animacy in visual scenes. Their
model specifically addresses chasing perception through parallel pre-attentive detection of
agent-like motion followed by capacity-limited Bayesian inference over candidate hypotheses.
This hybrid approach successfully reproduced human performance in chasing detection tasks,
capturing sensitivity to both stimulus complexity and cognitive constraints. Our VAD model
adopts a similar hybrid strategy by combining object-centric representation learning with
structured dynamics modeling, but focuses on unsupervised learning rather than implement-
ing fixed detection mechanisms.

2.4.3 Generative Models for Active Vision
Parr et al. (2021) presents a generative modeling framework for active vision that explains
how agents sample their environment through eye movements. Their approach formulates
vision as inverting a generative process that predicts retinal input given scene contents and
viewpoint. By treating perception and action as jointly optimizing a variational free energy
objective, they unify various visual phenomena under a single computational principle. This
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emphasis on generative modeling conceptually informs our approach, though we focus on
discovering agents in visual scenes rather than modeling visual sampling behavior.

2.4.4 Our Approach: Variational Agent Discovery
Our method synthesizes insights from these prior frameworks while addressing their limita-
tions. Unlike Baker et al. (2009) and Ullman et al. (2009), we operate directly on visual
observations without requiring symbolic representations. In contrast to Gao et al. (2019)’s
fixed detection strategy, our approach learns to discover agents through unsupervised train-
ing on image sequences.

The key innovation in our approach is framing agent discovery as structured variational
inference in a factorized latent space. While previous models assumed known agent identities,
our VAD model learns agent representations by explicitly modeling latent actions driving
state transitions. Our LVAD objective creates an inductive pressure to model entities whose
dynamics are better explained by internal policies. We formalize this through an evidence
lower bound (ELBO) derived and discussed in detail in Section 3.3.

In summary, our work connects Bayesian models of goal inference with modern represen-
tation learning techniques, resulting in a differentiable, end-to-end trainable VAD architec-
ture that discovers agents directly from raw visual input—a capability not present in prior
computational frameworks.
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2.5 Object-Centric Representation Learning: Founda-
tions for Agent-Centric Models

The ability to decompose visual scenes into separate objects and track them across time is
fundamental to how humans perceive their environment. This section explores how object-
centric learning provides the technical foundation for our agent-centric representation model.

2.5.1 From Convolutional Neural Networks to Object-Centric Rep-
resentations

While traditional computer vision models process images holistically, object-centric learning
explicitly decomposes scenes into separate object representations. Standard CNNs struggle
with tasks requiring reasoning about individual objects and their interactions (Johnson et al.,
2017; Yi et al., 2024). By structuring representations around discrete entities, object-centric
models enable more systematic generalization and may align more closely with human cog-
nitive abilities to parse scenes into meaningful components (Spelke, 1990; Kahneman et al.,
1992).

In fact, object-centric decomposition may strongly align with the object-file theory pro-
posed by Kahneman et al. (1992), where the visual system maintains distinct “files” for each
significant object in a scene. Just as human perception operates through object-based at-
tentional selection (Scholl, 2009; Alvarez and Cavanagh, 2005), computational object-centric
models aim to replicate this capacity for discrete entity representation.

2.5.2 Attention Mechanisms and Slot Attention
The Transformer architecture (Vaswani et al., 2017) introduced self-attention mechanisms
that compute pairwise interactions between elements through scaled dot-product attention:

Attention(Q,K, V ) = softmax
(
QK⊤
√
dk

)
V (2.20)

where Q, K, and V represent queries, keys, and values respectively, and dk is the dimen-
sionality of the key vectors.

Building on this development, Locatello et al. (2020) introduced Slot Attention, a spe-
cialized attention mechanism designed specifically for unsupervised object-centric learning.
Slot Attention provides an inductive bias for grouping perceptual features into object-centric
representations called “slots”(think latent variables or factors), without requiring explicit su-
pervision about object identities.

The Slot Attention module operates by iteratively refining a set of slot representations
through attention-based competition over input features. As illustrated in Figure 2.4, given
input features I ∈ RN×DI (where N is the number of input elements and DI is the feature
dimension) and a set of slot representations s̃ ∈ RK×Ds̃ (where K is the number of slots and
Ds̃ is the slot dimension), Slot Attention performs the following operations:
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Linear projections to obtain queries, keys, and values:

Q = s̃WQ (2.21)
K = IWK (2.22)
V = IWV (2.23)

where WQ, WK , and WV are learnable projection matrices.
Computation of attention weights with a softmax normalization over slots:

A =
QK⊤
√
D

(2.24)

Āij =
exp(Aij)∑
j′ exp(Aij′)

(2.25)

The normalization ensures that input features compete for assignment to different slots,
which encourages specialization among the slots.

Weighted aggregation of values based on attention weights:

U = ĀV (2.26)

Slot update using a GRU cell or a simple weighted residual connection:

s̃(t+1) = GRU(U , s̃(t)) (2.27)

where s̃(t) represents the slot representations at iteration t. The Gated Recurrent Unit
(GRU) provides a mechanism for selectively updating the slot information while preserv-
ing important prior content, enabling the slots to refine their representations over multiple
iterations.

A key distinction of Slot Attention from standard attention mechanisms is its normal-
ization scheme. While traditional attention normalizes over the input elements (keys), Slot
Attention normalizes over the slots (queries), ensuring that each input feature contributes
primarily to a single slot. This creates a form of competition that drives slots to specialize
in representing distinct objects.

The competitive binding process in Slot Attention parallels visual selective attention
mechanisms described by Choi and Scholl (2004) and Most et al. (2005), where attention
selects which perceptual elements are bound together into coherent object representations.
Just as human attention may modulate the perception of animacy, Slot Attention’s compet-
itive mechanism ensures that perceptual features are selectively bound to the most relevant
slot representations.

2.5.3 Extending Slot-Based Models to Video
Understanding agency requires reasoning about dynamics and temporal consistency. Kipf
et al. (2021) extended Slot Attention to the temporal domain with Slot Attention for Video
(SAVi), which maintains object identity across frames by propagating slot representations
temporally:
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Figure 2.4: Slot Attention mechanism for object-centric representation learning. Top row:
Input image (left) is processed to create object-centric attention maps (center, right) where
each slot focuses on a different object. Bottom row: The mechanism works by projecting
slots into queries and input features into keys and values, computing attention weights across
slots (not inputs), and iteratively refining slot representations. This competitive binding
encourages slots to specialize in representing distinct objects.

s̃t = fupdate(s̃t−1, It) (2.28)

where s̃t represents the slot representations at time t, It is the current frame, and fupdate
is an update function that incorporates Slot Attention.

SAVi demonstrated the ability to discover and track objects in video sequences without
explicit supervision about object identities. By maintaining temporal consistency in slot
assignments, SAVi enables reasoning about object dynamics and interactions over time.

This temporal consistency in object tracking may relate to the object-file theory, where
Kahneman et al. (1992) and Scholl (2009) describe how the visual system maintains the
continuity of object representations across time and space.
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2.6 Reinforcement Learning
How do agents learn to make decisions that maximize their future rewards? This question
has driven decades of research in reinforcement learning (RL), a framework for modeling
sequential decision-making processes (Sutton and Barto, 1998; Kaelbling et al., 1996; Bert-
sekas and Tsitsiklis, 1996). While the primary contribution of this thesis is the unsupervised
discovery of agent representations, reinforcement learning provides insights into how these
agents might select actions once identified. This section examines the key concepts from rein-
forcement learning and multi-agent environments that inform our approach to agent-centric
representation learning.

2.6.1 Foundations of Reinforcement Learning and World Models
Reinforcement learning problems are typically formalized as Markov Decision Processes
(MDPs), defined by the tuple (S,A, P, R, γ) (Puterman, 1994; Bellman, 1957). Here, S
represents the state space, A is the action space, P : S × A × S → [0, 1] defines the tran-
sition dynamics where P (s′|s, a) is the probability of transitioning to state s′ after taking
action a in state s1, R : S × A× S → R is the reward function, and γ ∈ [0, 1) is a discount
factor balancing immediate versus future rewards.

An agent’s behavior is characterized by a policy π : S × A → [0, 1], which defines a
probability distribution over actions for each state. The goal in reinforcement learning is to
find an optimal policy π∗ that maximizes the expected discounted cumulative reward:

π∗ = arg max
π

Eτ∼π

[
∞∑
t=0

γtrt

]
(2.29)

where τ = (s0, a0, r0, s1, a1, r1, . . .) denotes a trajectory sampled according to the policy
π and the environment dynamics P .

There are two primary approaches to solving reinforcement learning problems: value-
based methods and policy-based methods. Value-based methods, exemplified by Q-learning
(Watkins and Dayan, 1992; Mnih et al., 2015) and DQN (Mnih et al., 2013, 2015), esti-
mate the expected return for state-action pairs and derive a policy by selecting actions that
maximize this value. While these methods excel in discrete action spaces, they often face
challenges in continuous action domains (Lillicrap et al., 2016; Schulman et al., 2015). It’s
important to note that modern algorithms often combine elements from both approaches to
leverage their complementary strengths.

2.6.2 Policy Gradient Methods and PPO
Policy gradient methods address limitations of pure value-based approaches by directly op-
timizing a parameterized policy πθ (Williams, 1992; Sutton et al., 1999; Peters and Schaal,

1Note that, s here represents the complete environment state in the context of RL, which differs from our
use of s̃ in Sections 2.5.2 and 3.1 where it represents slot-based object-centric representations.
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2008). The policy gradient theorem (Sutton et al., 1999) provides the mathematical foun-
dation for these approaches, expressing the gradient of the expected return with respect to
policy parameters:

∇θJ(θ) = Eτ∼πθ

[
∞∑
t=0

∇θ log πθ(at|st) ·Gt

]
(2.30)

where Gt =
∑∞

k=0 γ
krt+k is the return from time step t. This formulation enables gradient

ascent directly on the policy parameters. Various policy gradient algorithms have been de-
veloped, including REINFORCE (Williams, 1992), Natural Policy Gradient (Kakade, 2002),
and Trust Region Policy Optimization (TRPO) (Schulman et al., 2015). While the basic
policy gradient formulation uses only trajectory returns, modern implementations typically
incorporate value function estimates to reduce variance and improve learning efficiency, lead-
ing to actor-critic approaches that combine policy-based and value-based learning.

For continuous action spaces, policies often output the parameters of a Gaussian distri-
bution (Schulman et al., 2015, 2017; Haarnoja et al., 2018):

πθ(a|s) = N (a|µθ(s), σθ(s)) (2.31)
where µθ(s) and σθ(s) are the state-dependent mean and standard deviation produced

by the policy network. This parameterization enables sampling of continuous actions while
maintaining differentiability for gradient-based optimization (Silver et al., 2014).

While vanilla policy gradient methods can be effective, they suffer from high variance and
sensitivity to step sizes (Kakade, 2002; Schulman et al., 2015). Proximal Policy Optimization
(PPO) (Schulman et al., 2017) addresses these issues by constraining policy updates to remain
within a trust region around the current policy. Building on ideas from Trust Region Policy
Optimization (TRPO) (Schulman et al., 2015), PPO uses a simpler clipped objective function
that prevents excessively large policy changes:

LCLIP(θ) = Et [min (rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)] (2.32)

where rt(θ) = πθ(at|st)
πθold (at|st)

is the probability ratio between the new and old policies, At

is the advantage estimate (Schulman et al., 2016), and ϵ is a hyperparameter (typically
0.1 or 0.2) that constrains the policy update. Importantly, PPO employs an actor-critic
architecture where a value function is learned alongside the policy to estimate advantages,
thereby reducing variance in the policy gradient estimates. This integration of value-based
and policy-based approaches has contributed to PPO becoming one of the most widely used
RL algorithms due to its simplicity, effectiveness, and robustness across a variety of tasks
(Andrychowicz et al., 2020).

Figure 2.5 illustrates key concepts in policy gradient methods and PPO. The top row
shows a toy policy gradient objective landscape (left), demonstrating how gradient ascent
navigates the parameter space to find an optimal policy; the PPO clipping objective (mid-
dle), showing how PPO constrains updates to stay within a trust region; and learning curves
(right), highlighting PPO’s stability compared to vanilla policy gradients. The bottom row
visualizes how policy updates differ between vanilla policy gradients (left) and PPO (mid-
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dle), with PPO producing more conservative changes, and a trust region comparison (right)
showing how PPO constrains updates to prevent destructive policy changes.
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Figure 2.5: Visualization of policy gradient methods and Proximal Policy Optimization
(PPO). Top row: (Left) Policy gradient objective landscape showing gradient paths to-
ward optimal policies; (Middle) PPO clipping objective illustrating how the algorithm con-
strains policy updates for both positive and negative advantages; (Right) Learning curves
demonstrating PPO’s lower variance and improved performance compared to vanilla policy
gradients. Bottom row: (Left) Vanilla policy gradient update showing potentially large
probability shifts; (Middle) PPO policy update demonstrating more conservative probability
changes; (Right) Trust region comparison visualizing how PPO constrains updates to remain
within a safe region around the current policy, preventing potentially destructive updates.

2.6.3 World Models and Model-Based RL
A particularly relevant area for our agent-centric approach is model-based RL (Moerland
et al., 2023; Sutton, 1991; Deisenroth and Rasmussen, 2011), especially the concept of world
models. World models are internal representations of environment dynamics that allow
agents to predict the consequences of their actions (Ha and Schmidhuber, 2018; Hafner
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et al., 2019, 2020). Formally, a world model learns the transition dynamics P (st+1|st, at)
and possibly the reward function R(st, at, st+1). With a learned model, an agent can plan
ahead by simulating outcomes without environmental interaction (Silver et al., 2017; Wang
et al., 2019), learn more efficiently through synthetic experience generation (Sutton, 1990;
Ha and Schmidhuber, 2018), and adapt to environmental changes by updating its internal
model (Nagabandi et al., 2018; Janner et al., 2019). Recent advances include Dreamer
(Hafner et al., 2019, 2020), which learns a latent dynamics model and plans in latent space,
and MuZero (Schrittwieser et al., 2020), which combines model-based planning with model-
free learning without requiring an explicit dynamics model. This concept of modeling the
environment is similar to our task of modeling agents in multi-agent environments. By
learning representations of other agents, an agent could effectively incorporate them into its
world model, enabling more effective planning and interaction (more on this in 5.4).

2.6.4 Multi-Agent Reinforcement Learning
When multiple agents interact in a shared environment, the single-agent MDP framework
extends to multi-agent settings. In a multi-agent MDP with n agents, each agent i has its
own action space Ai and typically observes a local state oi derived from the global state
s. The joint action a = (a1, a2, . . . , an) influences the next state according to the transition
function P (s′|s, a).

The learning objective becomes significantly more complex in multi-agent settings be-
cause the environment appears non-stationary from each agent’s perspective as other agents
learn and change their policies. Additionally, coordinated behaviors may require different
learning approaches, and partial observability often becomes a challenge as each agent only
has access to limited information about the environment state. Several algorithms have been
developed to address these challenges:

Multi-Agent PPO (MAPPO) MAPPO (Yu et al., 2022) extends PPO to multi-agent
settings by using a centralized value function with decentralized policies. This centralized
training with decentralized execution (CTDE) paradigm allows value functions to condition
on global information during training while maintaining decentralized execution. MAPPO
has demonstrated strong performance across various multi-agent tasks while maintaining the
sample efficiency and stability benefits of PPO.

Multi-Agent Deep Deterministic Policy Gradient (MADDPG) MADDPG (Lowe
et al., 2017) adapts DDPG for multi-agent environments by training a centralized critic for
each agent that has access to all agents’ observations and actions, while each agent’s policy
(actor) uses only its local observations. This approach effectively transforms a non-stationary
environment into a stationary one from the perspective of each critic, enabling more stable
learning. MADDPG explicitly incorporates information about other agents’ policies into each
agent’s learning process, making it particularly suitable for mixed cooperative-competitive
environments.
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Multi-Agent Advantage Actor-Critic (MA A2C) MA A2C (Iqbal and Sha, 2019)
extends the A2C algorithm to multi-agent settings, often using attention mechanisms to
selectively focus on relevant agents. This approach enables agents to adapt their behavior
based on the importance of other agents’ states and actions in the current context, improving
coordination in dynamic team compositions.

A more straightforward approach to multi-agent reinforcement learning is Independent
PPO (IPPO), in which each agent independently runs its own instance of PPO without
explicit coordination mechanisms. Despite this architectural simplicity, IPPO consistently
serves as a strong baseline in the field and is the approach we adopt in our experiments in
Section 4.2. While IPPO does not explicitly model other agents’ behaviors, it can achieve
competitive performance when agents implicitly adapt to one another through environmen-
tal feedback. It is worth noting that in our experiments in Section 4.2, the IPPO/PPO
state-based agents have access to all agents’ states. This highlights a key trade-off in multi-
agent algorithm design: balancing the use of explicit agent state information against learning
indirectly through observations. Algorithms such as MADDPG and MAPPO formally incor-
porate information about other agents during training, while even seemingly independent
approaches like IPPO may have access to other agents’ state information and policies de-
pending on the specific environment configuration.

2.6.5 Agent Modeling and Theory of Mind
Beyond RL, a critical component for multi-agent learning is the ability to model other
agents. Agent modeling—constructing representations of other agents’ policies, goals, and
beliefs—is crucial for effective decision-making in social contexts. While initially developed
for competitive scenarios (hence “opponent modeling”), these techniques apply broadly to
any interactive agent.

Learning with Opponent Learning Awareness (LOLA) (Foerster et al., 2017) represents
a significant advance in this area. LOLA agents explicitly account for the fact that their
opponents are also learning, differentiating through the opponent’s learning process when
computing policy updates:

∇θiVi(θi, θ−i) +∇θ−i
Vi(θi, θ−i) · ∇θiθ−i (2.33)

where θi represents the parameters of agent i’s policy, θ−i represents the parameters of
other agents’ policies, and ∇θiθ−i captures how other agents’ policy parameters change in
response to agent i’s policy. This second-order optimization enables more stable learning
dynamics, particularly in cases where naive learning might lead to suboptimal outcomes.

Theory of Mind has also inspired computational approaches to agent modeling. Rabi-
nowitz et al. (2018)’s Machine Theory of Mind (ToMnet) uses meta-learning to build models
of other agents. Given past trajectories τpast and recent observations orecent, ToMnet approx-
imates:
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echar = fchar(τpast) (2.34)
emental = fmental(orecent, echar) (2.35)

â = fpred(s, emental) (2.36)

where echar is a “character embedding” representing the agent’s policy or type, emental
is the mental state embedding, and â is the predicted action for a given state s. ToMnet
demonstrated the ability to model diverse agent types, including agents with different reward
functions, memory capacities, and planning horizons.

While these approaches to agent modeling and Theory of Mind provide frameworks for
reasoning about other agents’ mental states, they operate on symbolic or highly abstracted
state representations (like the models we discussed in 2.4) rather than raw perceptual inputs.



Chapter 3

Method

3.1 Background and Problem Statement
Building on the foundations of agent perception from cognitive science and object-centric
representation learning from machine learning (Ch. 2), we now formalize the problem of
unsupervised agent discovery from visual observations.

We situate our problem setting as a Partially Observable Multi-Agent Markov Decision
Processes (POMDPs), defined as (S, {Ai}Ni=1, T, {Ri}Ni=1, {Xi}Ni=1, γ)

1.
Within this formalism, we operate under observational constraints: we access only a

sequence of rendered visual observations X = {x0, x1, ..., xT}, where each xt ∈ RH×W×C

represents an image frame containing multiple entities. The agents’ actions, rewards, and
individual observations remain unobserved—all information must be inferred from the pixel-
level visual data.

Object-centric representation learning, particularly slot attention mechanisms, provides
our computational foundation for decomposing these complex scenes. As detailed in Section
2.5, these approaches factor visual observations into a set of slot representations {s̃1t , s̃2t , ..., s̃Kt }2,
where each s̃kt can be assumed to encode some structural entity. When extended to video
sequences as in SAVi (Kipf et al., 2021), these models can be optimized using maximum
likelihood to predict the next frame:

max
θ

log p(xt+1|{s̃1t , s̃2t , ..., s̃Kt }) ≈ −∥xt+1 −Decoder(fdyn({s̃1t , s̃2t , ..., s̃Kt }))∥2 (3.1)

This approximation maps the probabilistic objective to a deterministic reconstruction
loss, where the negative squared error term −∥xt+1 −Decoder(fdyn({s̃1t , s̃2t , ..., s̃Kt }))∥2 corre-
sponds to the log-likelihood under a Gaussian observation model with fixed variance. While
effective for general scene decomposition, SAVi treats all entities uniformly. We introduce a
variational inference perspective that explicitly models actions as latent variables, creating
an inductive bias toward identifying entities whose transitions reflect agency rather than
merely physical/environmental dynamics.

1We use X to denote observations, which are commonly represented as O in standard POMDP notation.
2 Similar to 2.5.2, s̃ denotes a slot-based representation and not the RL state notation s in 2.6.1.
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3.2 Structured Variational Approach to Agent Discov-
ery

Our approach formalizes agent discovery as a structured probabilistic inference problem with
latent variables. Unlike standard object-centric models that directly predict state transitions,
we model these transitions as consequences of agent decisions—actions sampled from internal
policies.

We make the following assumptions about our problem: First, agents follow coherent
policies that can be modeled as conditional distributions p(ai|s̃i) over actions given states.
Second, slot attention mechanisms provide sufficiently structured representations for entity-
centric modeling. Third, observed transitions between states are generated by unobservable
actions that must be inferred from dynamics. Fourth, these dynamics arise from agents
executing actions according to their policies, treating observed data as samples from a process
where agent decisions drive environmental dynamics.

In our slot-based representation framework, the state of slot i at time t is denoted as
s̃it. We explicitly model the transition probability p(s̃it+1|s̃1t , s̃2t , ..., s̃Kt ) while accounting for a
latent action variable ai that potentially drives this transition. The true transition probability
involves marginalizing over all possible actions:

p(s̃it+1 |̃st) =
∫

p(s̃it+1, ai |̃st) dai (3.2)

where s̃t = {s̃1t , s̃2t , ..., s̃Kt } represents the complete set of slots at time t. Similar to
the challenge described in Section 2.3.1, this marginalization becomes computationally in-
tractable, especially since in our case we do not have direct access to the joint distribution
p(s̃it+1, ai |̃st). By applying Bayes’ rule, we can decompose this joint probability into more
familiar quantities, and then employ variational inference techniques as outlined in Section
2.3.2 to approximate the marginalization efficiently.

3.3 Derivation of the Variational Agent Discovery Ob-
jective

To formalize our approach mathematically, we begin with the log marginal likelihood for
a single slot transition and derive a tractable evidence lower bound (ELBO), following the
approach introduced in Section 2.3.3. We introduce a variational posterior q(ai|s̃it, s̃it+1) to
approximate the true posterior distribution over actions—an inverse model that infers the
actions most likely to have generated observed transitions.

Starting with the log marginal likelihood:

log p(s̃it+1 |̃st) = log
∫

p(s̃it+1, ai |̃st) dai (3.3)

We apply the standard variational inference trick (see equation 2.8):
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log p(s̃it+1 |̃st) = log
∫

q(ai|s̃it, s̃it+1)
p(s̃it+1, ai |̃st)
q(ai|s̃it, s̃it+1)

dai (3.4)

Applying Jensen’s inequality and expanding the joint probability using the chain rule,
assuming that an agent’s action depends primarily on its own state:

p(s̃it+1, ai |̃st) = p(s̃it+1|ai, s̃t)p(ai|s̃it) (3.5)
We derive the ELBO for each slot, which closely parallels the structure presented in

equation 2.11:

Li(s̃t, s̃it+1; θ, ϕ) = Eqϕ(ai|s̃it,s̃it+1)

[
log pθ(s̃it+1|ai, s̃t)

]
−DKL(qϕ(ai|s̃it, s̃it+1)||pθ(ai|s̃it)) (3.6)

This ELBO decomposes into the following conceptual components and terms:
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Variational Objective Components

Li(s̃t, s̃it+1; θ, ϕ) = Eqϕ(ai|s̃it,s̃it+1)

[
log pθ(s̃it+1|ai, s̃t)

]
−DKL(qϕ(ai|s̃it, s̃it+1)||pθ(ai|s̃it)) (3.7)

Component Function
pθ(s̃

i
t+1|ai, s̃t) Forward dynamics model predicts the next

state given current state’s slots and inferred ac-
tion. It forms the core of our predictive model.

qϕ(ai|s̃it, s̃it+1) Inverse action model infers the action that
most likely caused the observed transition be-
tween s̃it and s̃it+1.

pθ(ai|s̃it) Agent policy represents a conditional distribu-
tion over latent action variables given the current
entity slot s̃it.

Loss terms:
Eqϕ(ai|s̃it,s̃it+1)

[
log pθ(s̃it+1|ai, s̃t)

]
Reconstruction term encourages accurate pre-
diction of the next state given the inferred action,
similar to the reconstruction term in equation
2.13.

DKL(qϕ(ai|s̃it, s̃it+1)||pθ(ai|s̃it)) Policy regularization keeps inferred actions
close to the agent’s learned policy, analogous
to the regularization term described in the box
2.3.4.

These components create a computational pressure that drives the emergence of agent-
specific representations (4.4, 5.1). Entities whose transitions exhibit agency will de-
velop structured policies.

To apply this objective to scenes with multiple entities, we sum the ELBO across all
slots and combine it with a reconstruction loss to form our full Variational Agent Discovery
objective LVAD:

LVAD = λreconLrecon + λELBO
∑
i∈slots

Li (3.8)

where Lrecon is a reconstruction loss that encourages accurate prediction of future frames,
and λrecon and λELBO are hyperparameters that balance the importance of reconstruction
versus structured latent action modeling.

This LVAD objective (Figure 3.1) serves as the foundation for our Variational Agent
Discovery (VAD) model (which we introduce next 3.4) and can also be used as an auxiliary
loss to improve sample efficiency in reinforcement learning, as we demonstrate in Section 4.2.
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Figure 3.1: Conceptual illustration of the Variational Agent Discovery (LVAD) ob-
jective. Top left: Visual observation sequence showing frames with two agents (blue and
navy) and a static obstacle (black). Top right: Slot-based entity representations in em-
bedding space, showing how agents exhibit movement between timesteps while the obstacle
remains static. Bottom row: The three key components of our VAD framework: (1) An
inverse action model qϕ that infers the most likely action given the observed state transition,
(2) A forward dynamics model pθ that predicts the next state given the current state and
inferred action, with reconstruction loss measuring prediction accuracy, and (3) An agent
policy prior pθ that learns a conditional distribution over actions given the current state,
regularized by KL divergence. Bottom right: The complete LVAD objective combines these
components to create an inductive bias that distinguishes entities with agency from those
that follow environmental dynamics.
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3.4 Implementation Details
This section presents the detailed implementation of our Variational Agent Discovery
(VAD) model, which operationalizes the theoretical objective LVAD formulated in Sec-
tion 3.3. Our architecture is a deep conditional slot-based variational autoencoder that
implements each component of the variational objective through specific neural network
modules designed to work together within the probabilistic framework.

3.4.1 Architecture Overview
Our implementation consists of: (i) a slot-based object-centric encoder that decomposes vi-
sual scenes into entity-specific representations; (ii) an inverse dynamics model that infers
latent actions from observed state transitions; (iii) a forward dynamics model that predicts
future states conditioned on actions; and (iv) a reconstruction decoder that projects slot
representations back to pixel space. Together, the inverse and forward dynamics models
function as a conditional variational autoencoder (CVAE), with actions serving as the la-
tent variables conditioned on states. Figure 3.3 provides a schematic representation of this
architecture and the information flow between components.

Algorithm 1 Variational Agent Discovery Algorithm
Require: Video sequence X = {x0, x1, . . . , xT}, number of slots K, number of actions A
Ensure: Slot representations s̃t, inferred actions ait

1: ft ← CNN(xt) for all t ∈ {0, . . . , T} {Extract features}
2: Initialize s̃0 randomly
3: for t ∈ {1, . . . , T} do
4: s̃t ← SlotAttention(s̃t−1, ft) {Update object slots}
5: end for
6: for t ∈ {0, . . . , T − 1} do
7: for i ∈ {1, . . . , K} do
8: λi

t ← InverseDynamicsModel(s̃it, s̃it+1) {Action logits}
9: ait ∼ GumbelSoftmax(λi

t, τ) {Sample action}
10: ˆ̃sit+1 ← ForwardDynamicsModel(ait, s̃t) {Predict next state}
11: Lt,i

ELBO ← log pθ(ˆ̃sit+1|s̃it+1)−DKL(qϕ(a
i
t|s̃it, s̃it+1)∥pθ(ait|s̃it)) {Compute ELBO}

12: end for
13: ˆ̃st+1 ← {ˆ̃s1t+1, ˆ̃s

2
t+1, . . . , ˆ̃s

K
t+1} {Collect predicted slots}

14: x̂t+1 ← SpatialBroadcastDecoder(ˆ̃st+1) {Decode to pixels}
15: Lt

recon ← ∥xt+1 − x̂t+1∥2 {Reconstruction loss}
16: end for
17: Compute total objective using LVAD from Equation 3.8
18:
19: return s̃t, ait
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3.4.2 Object-Centric Representation Learning
We build our agent discovery model on top of the Slot Attention for Video (SAVi) architecture
(Kipf et al., 2021). As detailed in Section 2.5, SAVi extends the original Slot Attention
mechanism to handle temporal data by propagating slot representations across frames.

Our implementation processes sequences of frames X = {x0, x1, . . . , xT} through a convo-
lutional neural network to extract features ft ∈ RN×D, where N = H ′ ×W ′ is the flattened
spatial dimension and D is the feature dimension:

ft = CNN(xt) (3.9)

We adopt the ’implicit differentiation’ approach for Slot Attention as explored in Wu
et al. (2023):

Slot Attention with Implicit Differentiation

During training, we propagate gradients only through the final iteration of Slot At-
tention. Specifically, we detach gradients for iterations l = 0 to L − 2 by applying
stop-gradient to each s̃(l+1)

t = SlotAttentionStep(ft, s̃(l)t ), and only allow gradient flow
for the final update s̃(L)t = SlotAttentionStep(ft, s̃(L−1)

t ).

This approach effectively treats earlier iterations as a fixed-point optimization process,
only backpropagating through the final iteration. As observed by Wu et al. (2023) and our
own exploration, this technique can improve performance by stabilizing training dynamics
and allowing better scaling with increased iterations, especially on complex datasets. The
implicit differentiation approach helps prevent optimization instabilities that may arise when
backpropagating through multiple recurrent iterations.

3.4.3 Variational Action Inference
Inverse Dynamics Model

The inverse dynamics model qϕ(ai|s̃it, s̃it+1) functions as the encoder component of our con-
ditional VAE, inferring the latent action that most likely caused the transition from s̃it to
s̃it+1, as introduced in Section 3.3. We implement this using a neural network that outputs
parameters of a categorical distribution over discrete actions:

h = Concat(s̃it, s̃it+1) (3.10)
h1 = GeLU(W1h + b1) (3.11)
h2 = GeLU(W2h1 + b2) (3.12)
λ = W3h2 + b3 (3.13)

where λ ∈ RA represents logits for a categorical distribution over A possible actions.
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As τ → 0, samples become one-hot (discrete), while as τ →∞, samples become uniform.

Figure 3.2: Visualization of the Gumbel-Softmax reparameterization trick used for differen-
tiable discrete action sampling. (a) The Gumbel-Softmax operation transforms logits from
the inverse dynamics model into differentiable samples. (b) Expected values of Gumbel-
Softmax samples at different temperatures, showing convergence to the categorical distribu-
tion as τ → 0. (c) Sample discreteness illustration showing how temperature controls the
sharpness of the distribution—lower temperatures produce more one-hot-like vectors while
higher temperatures yield more uniform distributions.

To enable end-to-end differentiability (addressing the challenge described in Section 2.3.6),
we use the Gumbel-Softmax reparameterization trick to sample from this categorical distri-
bution (illustrated in Figure 3.2):

ai =
exp((λi + gi)/τ)∑A
j=1 exp((λj + gj)/τ)

(3.14)

where gi ∼ Gumbel(0, 1) are i.i.d. samples from the Gumbel distribution and τ is a
temperature parameter that controls the discreteness of the distribution.

Forward Dynamics Model

The forward dynamics model pθ(s̃
i
t+1|ai, s̃t) serves as the decoder in our conditional VAE

framework, predicting the next state given the current state and inferred action, correspond-
ing to the component described in the box 3.3. Rather than using a simple MLP, we imple-
ment this function using a Transformer architecture that can model complex dependencies
between the action and state:

hcond = Concat(ai, s̃it) (3.15)
ˆ̃sit+1 = Transformer(hcond) (3.16)

Our Transformer implementation uses pre-normalization with a residual connection struc-
ture that has been shown to improve training stability. The multi-head attention mechanism
allows the model to attend to different aspects of the state conditioned on the action.
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Policy Prior

The policy model pθ(ai|s̃it) represents the prior distribution over actions given the current
state, as introduced in the ELBO formulation in equation 3.6. Rather than using a fixed
prior, we implement a learned prior through a simple parameterization:

pθ(ai|s̃it) = Categorical(π) (3.17)

where π ∈ RA are learnable parameters representing logits for each action. This learned
prior adapts to the structure of the data, encouraging the model to discover coherent policies
for each entity rather than arbitrary action assignments.

Implementing the ELBO Component

To implement the ELBO component of the LVAD objective derived in Section 3.3, we com-
pute:

LELBO = Eqϕ(ai|s̃it,s̃it+1)

[
log pθ(s̃it+1|ai, s̃t)

]
−DKL(qϕ(ai|s̃it, s̃it+1)∥pθ(ai|s̃it)) (3.18)

This computation directly corresponds to the individual slot-wise terms in the LVAD
objective from Equation 3.8.

3.4.4 Spatial Broadcast Decoder
We implement a spatial broadcast decoder that projects slot representations back to pixel
space. This approach, introduced by Watters et al. (2019), aligns with our objective to
maintain spatial consistency in object representations.

The key of spatial broadcast decoding is to first broadcast each slot representation spa-
tially and then process it with convolutional layers, rather than using transposed convolu-
tions. This avoids checkerboard artifacts and maintains spatial consistency.

For each slot s̃it+1, the spatial broadcast process creates a feature map where the slot rep-
resentation is repeated at each spatial location and augmented with positional embeddings:

hi
spatial = SpatialBroadcast(s̃it+1, H,W ) + PositionalEmbedding(H,W ) (3.19)

This feature map is then processed with a CNN to generate both a reconstruction and
an alpha mask:

xi
t+1, α

i
t+1 = DecoderCNN(hi

spatial) (3.20)

The final reconstruction combines these per-slot outputs using a weighted sum:
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Visual Abstraction of VAD

Figure 3.3: Visual abstraction of the VAD conditional variational autoencoder architecture.
The process flows from left to right: consecutive frames xt and xt+1 are encoded into slot
representations s̃t and s̃t+1. These slot representations feed into the inverse dynamics model
(encoder), which produces logits λ that are used to sample latent actions a via the Gumbel-
Softmax trick. The sampled action a, together with slot representation s̃t, is processed
by the forward dynamics model (decoder) to predict the next slot state ˆ̃st+1. Finally, the
predicted slot representation is passed through the spatial broadcast decoder to generate
the reconstructed frame x̂t+1. This end-to-end architecture optimizes the LVAD objective by
balancing reconstruction quality with the consistency between inferred actions and learned
policies.

α̂i
t+1 =

exp(αi
t+1)∑K

j=1 exp(αj
t+1)

(3.21)

x̂t+1 =
K∑
i=1

α̂i
t+1 ⊙ xi

t+1 (3.22)

3.4.5 Training

Training Stabilization Techniques

Challenge Solution
Slot representation optimization Implicit differentiation in Slot Atten-

tion (gradient flow only through final
iteration)

Discrete action sampling Gumbel-Softmax with temperature an-
nealing

Mode collapse in action space Entropy regularization on policy prior
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The temperature parameter τ in the Gumbel-Softmax is annealed during training from
an initial value of 1.0 to a final value of 0.1, gradually making the action sampling more
discrete. This annealing schedule is crucial for balancing exploration and exploitation in the
action space.

For the reconstruction loss component of LVAD, we use a mean squared error between
the original frames and their next time-step reconstructions:

Lrecon =
1

T

T∑
t=1

∥xt+1 − x̂t+1∥2 (3.23)

As shown in Section 4.2, the same LVAD objective can also serve as an effective auxiliary
loss for reinforcement learning, improving sample efficiency across various multi-agent tasks.

3.4.6 XLA Acceleration
The implementation leverages JAX (Bradbury et al., 2018) and Flax (Heek et al., 2024) for
efficient computation. JAX’s functional programming model enables seamless differentiation
through complex computational graphs, including the Gumbel-Softmax reparameterization.
Flax provides a modular framework for defining neural network architectures with clear
separation of parameters and computation.

The advantage of our implementation is the reduction in training time achieved through
XLA (Accelerated Linear Algebra) compilation. Our preliminary experiments with PyTorch
implementations of similar variational agent discovery models required weeks of training on
high-end GPUs. By reimplementing the entire pipeline in JAX/Flax with just-in-time (JIT)
compilation, we reduced training time from weeks to hours—a speedup of more than 50×.

This acceleration stems from several JAX-specific optimizations:

JAX Performance Optimizations

Optimization Impact
Just-in-time compilation Converts Python functions to opti-

mized machine code
Automatic vectorization Parallelizes operations across batch di-

mensions
Fused operations Combines multiple operations into sin-

gle GPU kernels
Static graph optimization Eliminates Python overhead from the

computation loop
Functional programming model Enables efficient computation caching

and reuse

The performance gains are particularly significant for our model because of the complex
nested computation graph involving slot attention, transformer-based forward models, and
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gumbel-softmax operations. In PyTorch, these operations would be executed sequentially
with significant Python overhead, whereas JAX’s JIT compilation creates optimized kernels
that execute entirely on the accelerator.

Another critical optimization was rendering game frames directly in JAX rather than
using Python-based game engines. By implementing environment renders as pure JAX
functions, we eliminated costly CPU-GPU transfers and enabled end-to-end differentiation
through the entire pipeline, including environment interactions.

The JIT compilation and functional programming model of JAX enables us to leverage
hardware acceleration more efficiently, making our approach computationally feasible for
complex multi-agent environments with high-dimensional observations.



Chapter 4

Experimental Evaluation

This chapter evaluates our VAD model across multiple environments of increasing agent
complexity, and tests the efficacy of our LVAD objective as an auxiliary loss for reinforcement
learning. We examine the model’s capacity to infer latent actions from visual observations
and generalize to novel scenarios, as well as how our variational objective can improve sample
efficiency in multi-agent settings. Our experiments address four fundamental questions:

Research Questions

1. Do learned slot representations encode agent-centric information about policies,
goals, and agent structures? (Addressed in Tables 4.4, 4.5, 4.1, 4.2, 4.3, and
Figure 4.4)

2. Does our VAD model generalize to novel agents, goals, environmental configura-
tions, and capture principles of rational agency? (Addressed in Tables 4.4, 4.5,
4.1, 4.2, 4.3, Figures 4.4 and 4.5)

3. Does LVAD from 3.3 improve sample efficiency in multi-agent reinforcement learn-
ing when used as an auxiliary loss to PPO? (Addressed in Figure 4.6 and Ta-
ble 5.1)

4. Do learned slot representations exhibit mirror-neuron-like properties for agent
action perception? (Addressed in Figures 4.7–4.11 and Section 4.3)

4.1 Agent-centric Slot Representations and Generaliza-
tion

In this section, we investigate the first two research questions by examining whether our VAD
model learns meaningful agent-centric slot representations and whether these representations
enable generalization to novel scenarios.

54
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4.1.1 Evaluation Methodology
To evaluate the representations of our learned slot embeddings, we employ a linear probing
methodology. Linear probes assess whether learned representations encode specific informa-
tion without extensive fine-tuning (Alain and Bengio, 2018).

For each environment, we collect ground truth data on agents’ actions ait and goals gi

(where applicable). We train simple single-layer MLP classifiers on the learned slot represen-
tations s̃it to predict these ground truth labels:

âit = softmax(Was̃
i
t + ba) (4.1)

ĝi = softmax(Wgs̃
i
t + bg) (4.2)

where Wa, ba,Wg, bg are the learned parameters of the linear probes. The classifiers are
trained using standard cross-entropy loss.

At each time step, we compute the prediction accuracy for each of the K slots, rank
them from highest to lowest, and then average these ranked accuracies across all time steps
and episodes. This provides a clear picture of how well the best slots capture agent-centric
information. We quantify generalization capabilities using four complementary metrics. The
Performance Drop measures the percentage (change) decrease from familiar to novel condi-
tions. The Novel Agent Gap measures the percentage drop from the average performance
on familiar agents to the novel agent. The Generalization Advantage quantifies the abso-
lute percentage point improvement of our method over the baseline in novel conditions. The
Relative Improvement shows how many times better our model handles generalization
compared to the baseline.

All experimental results (Tables 4.4, 4.5, 4.1, 4.2, 4.3) are averaged over 15 random seeds.

4.1.2 Experimental Environments
We evaluate our model across three distinct environments of increasing complexity, systemat-
ically progressing from single-agent to multi-agent scenarios. Across all environments, several
experimental parameters remain consistent: all environments are rendered as 64 × 64 × 3
RGB images, agents follow optimal policies designed to maximize task performance, and we
conduct evaluations in both familiar scenarios (similar to training) and novel scenarios (to
test generalization).

Minigrid: Single-Agent Goal-Directed Behavior

The Minigrid environment (Chevalier-Boisvert et al., 2018) provides a discrete grid-world
setting where a single agent navigates to pursue particular goal objects.

The environment consists of a 10× 10 grid where a single agent (red triangle) navigates
around obstacles to reach goal objects. The agent has full observability of the grid and
operates with four discrete actions: forward, left, right, and pickup object. We configure
the model with K = 4 slots to account for the agent, goal object, and potential distractor
goals. During training, the model observes the agent pursuing a green box, while a red key
is reserved for generalization testing.
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Figure 4.1: Minigrid environment configurations. Left: Training setup with red triangle
agent navigating to green box goal using optimal (shortest) path. Right: Testing setup
where agent must navigate to novel red key (⋆) goal. The environment contains distractor
goals that are irrelevant to the task.

The agent follows an optimal policy that navigates toward the goal object using the
shortest feasible path while avoiding obstacles. For evaluation, we assess both action pre-
diction (predicting the agent’s next action given its slot representation) and goal prediction
(identifying which of four possible goals the agent is pursuing) (Fig 4.1).

Overcooked: Two-Agent Cooperative Interaction

The Overcooked environment (Carroll et al., 2020) is a cooperative game where two agents
must coordinate to prepare and serve dishes in a virtual kitchen.

Agent1

Generalization Training

Overcooked Task: Cook onions and retrieve to goal
Forward

Right

Left

Pickup

Onions

Plate

Cooking Pot

Goal

Agent2

Put 
 


Action Space 

Figure 4.2: Overcooked environment configurations. Left: Training setup with red and blue
triangle agents coordinating to collect yellow onions, cook them in black pots, place them on
white plates, and deliver to green goal. Right: Testing setup with vertically flipped layout,
requiring agents to adapt coordination strategies to novel spatial configurations.

The environment consists of a grid-based kitchen with various stations: grey counters,
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black cooking pots, yellow onion ingredients, white plates, and green serving goals. Two
agents (red and blue triangles) navigate this space to complete a cooking workflow. The
action space consists of five discrete actions: forward, left, right, pickup, and put down.
Agents can pick up raw ingredients from counters, put them in cooking pots, retrieve cooked
ingredients with plates, and deliver completed dishes to goal locations. As shown in Fig-
ure 4.2, we evaluate both the training configuration and a test scenario where the kitchen
layout is vertically flipped, altering the positions of all agents, stations, and goals to assess
spatial generalization capabilities. We configure the model with K = 8 slots to account for
both agents and multiple objects in the scene.

The agents follow optimal cooperative policies that maximize the number of dishes served
in the fewest steps. These policies require sophisticated coordination: typically one agent
specializes in collecting ingredients while the other focuses on cooking and serving. For
evaluation, we focus on action prediction for both agents, assessing how well the model can
identify and predict the complementary roles each agent adopts.

Multi-Agent Particle Environment (MPE): Novel Three Agent Discovery

The Multi-Agent Particle Environment (Lowe et al., 2020) provides a controlled testbed for
multi-agent coordination and generalization to novel agents.

*

Landmark

Agent

New Agent

Generalization *Training

MPE Task: Learn to go to landmarks, 

and collaborate to avoid agent collisions

*

Up

Right

Left

Down

Stay

 

Action Space 

Figure 4.3: MPE environment configurations. Left: Training setup with two red circle agents
(connected by light red trajectory lines) navigating toward dark grey landmark goals while
avoiding collisions. Right: Testing setup with an additional third agent (marked with ⋆) and
a third goal, requiring agents to generalize their coordination strategy.

We implement the Simple Spread game, where agents must cover all landmarks while
avoiding collisions. Each agent is represented as a colored circle (red) that can move in the
2D space by applying forces in cardinal directions. Landmarks are represented as dark grey
circles. The action space consists of five discrete actions: up, down, left, right, and stay.
Agents are globally rewarded based on how far the closest agent is to each landmark (sum
of the minimum distances), while being locally penalized for agent-agent collisions (-1 per
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collision). We configure the model with K = 6 slots, allowing it to potentially allocate slots
to both agents and landmarks.

This cooperative task requires agents to coordinate their movements to cover all land-
marks while avoiding collisions. The optimal policy distributes agents efficiently among
landmarks, minimizing the sum of distances while preventing collisions. For evaluation, we
define both action prediction (predicting the agent’s next action given its slot representation)
and categorical goal prediction (identifying which landmark each agent is targeting).

4.1.3 Representation Quality and Generalization Results
Minigrid Results

Tables 4.1 and 4.2 present the results for action and goal prediction in the Minigrid environ-
ment under both familiar and novel goal conditions.

Table 4.1: Action prediction accuracy (%) in the Minigrid environment
Model Old Goal New Goal Performance (Change) Drop Generalization Advantage

Random Baseline 25.0 25.0 0.0% –
Object-Centric (SAVi) 80.0 46.0 42.5% –
VAD (Ours) 93.0 79.0 15.1% +33.0%

Performance Drop shows percentage decrease from Old Goal to New Goal. Generalization
Advantage shows how much better our method performs compared to the baseline on the new goal.

Table 4.2: Goal prediction accuracy (%) in the Minigrid environment
Model Old Goal New Goal Performance (Change) Drop Generalization Advantage

Random Baseline 25.0 25.0 0.0% –
Object-Centric (SAVi) 82.0 51.0 37.8% –
VAD (Ours) 95.0 83.0 12.6% +32.0%

Goal prediction involves identifying which of four possible goals the agent is pursuing.
Performance Drop shows percentage decrease from Old Goal to New Goal conditions.

Our VAD model not only achieves higher action prediction accuracy on the familiar goal
(green box) but also shows better generalization to the novel goal (red key). As shown in
Table 4.1, the performance drop for our model is only 15.1%, compared to a 42.5% drop
for the object-centric baseline. Similarly, for goal prediction (Table 4.2), our VAD model
maintains accuracy (83.0%) even on the novel goal, while baseline performance drops to
51.0%.

Overcooked Results

Table 4.3 presents the action prediction results for both agents in the Overcooked environ-
ment, comparing performance in familiar versus novel kitchen layouts.
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Table 4.3: Action prediction accuracy (%) in the Overcooked environment
Model Agent Familiar Config Novel Config Performance (Change) Drop Generalization Advantage

Random Baseline
Agent 1 20.0 20.0 0.0%

–
Agent 2 20.0 20.0 0.0%

Object-Centric (SAVi)
Agent 1 69.0 50.0 27.5%

–
Agent 2 68.0 48.0 29.4%

VAD (Ours) Agent 1 81.0 72.0 11.1% +22.0%
Agent 2 80.0 70.0 12.5% +22.0%

Our VAD model demonstrates higher action prediction accuracy for both agents, with bet-
ter generalization to novel kitchen configurations. The agent-centric model shows a smaller
performance drop (11-13%) compared to the object-centric baseline (27-29%) when tested
on novel layouts.

Multi-Agent Particle Environment Results

Tables 4.4 and 4.5 present the results for action and goal prediction in the MPE environment.
Our VAD model is evaluated against both a random baseline and a standard object-centric
model (SAVi).

Table 4.4: Action prediction accuracy (%) for the best slots in the MPE environment

Model Agent 1 Agent 2 Agent 3⋆ Novel Agent Gap

Random Baseline 20.0 20.0 20.0 0.0%
Object-Centric (SAVi) 64.0 66.0 48.0 -26.2%
VAD (Ours) 81.0 83.0 76.0 -7.3%

⋆ indicates the generalization agent not seen during training. Novel Agent Gap shows the
percentage drop from the average of Agent 1 & 2 to Agent 3.

Table 4.5: Goal prediction accuracy (%) for the best slots in the MPE environment

Model Agent 1 Agent 2 Agent 3⋆ Novel Agent Gap

Random Baseline 33.3 33.3 33.3 0.0%
Object-Centric (SAVi) 77.0 72.0 58.0 -22.1%
VAD (Ours) 85.0 88.0 84.0 -2.9%

⋆ indicates the generalization agent not seen during training. Novel Agent Gap shows the
percentage drop from the average of Agent 1 & 2 to Agent 3.

Our VAD model significantly outperforms the baseline object-centric model (SAVi) on
both action and goal prediction tasks. Notably, our model maintains high accuracy even for
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the novel agent (Agent 3⋆), with only a modest performance drop compared to the familiar
agents. For action prediction, our VAD model shows only a 7.3% drop in performance for
the novel agent, compared to a 26.2% drop for the object-centric baseline. Similarly for goal
prediction, our model shows a minimal 2.9% drop compared to the baseline’s 22.1% drop.

4.1.4 Qualitative Analysis of Learned Representations
Beyond quantitative results, we perform qualitative analyses on the slot representations to
gain insights into what the VAD model’s slots have learned about agents and their goals.

Figure 4.4 presents a comparative analysis of slot reconstructions generated by our
model’s spatial broadcast decoder across all three environments. These visualizations re-
veal how our approach decomposes scenes into meaningful entity-centric representations
that maintain consistency even in novel test scenarios.
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Figure 4.4: Slot-based reconstructions across all three environments demonstrating entity-
centric decomposition capabilities. Each row represents one environment (Minigrid, Over-
cooked, MPE from top to bottom), with columns showing: (1) Training scenario, (2) Testing
scenario with novel elements, (3-5) Individual slot reconstructions, (6) Full reconstructed im-
age. In Minigrid, slot 1 isolates the agent and slot 2 captures the goal object, even when
switched from green box to red key. In Overcooked, slot 1 reconstructs the red agent and
associated onions, while slot 2 captures the blue agent, cooking pot, and progress bar. In
MPE, slots 1, 2, and 3 perfectly isolate individual agents, generalizing to the novel third
agent in the test scenario.

In the Minigrid environment (top row), our VAD model allocates distinct slots to the
agent (slot 1) and the goal object (slot 2), maintaining this separation even when the goal
changes from a familiar green box during training to a novel red key during testing. Notably,
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slot 3 remains empty (black), demonstrating the model’s selectivity in focusing only on
behaviorally relevant entities (agents, goals) while ignoring distractor objects.

The Overcooked environment (middle row) showcases more complex agent-object rela-
tionships. Slot 1 consistently captures the red agent along with its most frequently interacted
objects (onions), while slot 2 reconstructs the blue agent along with the cooking pot and its
associated progress bar. This functional grouping suggests the model has learned to associate
entities not just by visual appearance but by their behavioral relationships. The consistency
of these assignments holds even when the environment is vertically flipped during testing,
indicating strong generalization of these entity-centric representations.

The MPE environment (bottom row) demonstrates the VAD model’s capacity to scale
to scenarios with a novel number of agents. During training with two agents and landmarks,
the model assigns slot 1 and slot 2 to each agent. Remarkably, when presented with a novel
scenario containing three agents, the model maintains consistent slot assignments for the
familiar agents while appropriately allocating slot 3 to the novel agent. This perfect agent
isolation across slots provides visual confirmation of our quantitative findings on novel agent
generalization.

These qualitative results highlight three important aspects of our VAD model: (1) it
consistently assigns specific entities to dedicated slots, (2) it maintains these assignments
across novel scenarios, and (3) it appears to organize entities based on behavioral relevance
rather than merely visual appearance. This structured agent-centric decomposition provides
the foundation for the improved generalization demonstrated in our quantitative evaluations.

4.1.5 Rational Action Prediction
To further evaluate our VAD model’s capacity to capture agent intentionality, we designed an
experiment inspired by Gergely and Csibra (2003) work on teleological reasoning in infants.
In their study, infants who observed an agent jumping over an obstacle to reach a goal
expected the agent to take a direct path when the obstacle was removed, suggesting an
early-developing capacity to interpret actions in terms of rational means to goals.

Train 

Images

Test  Image

(No Obstacle)

Agent
Goal

Obstacle
Trajectory

VAD Model

Prediction t=2

VAD Model

Prediction t=5

VAD Model
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Figure 4.5: Rational action prediction results. From left to right: (1) Training scenario
showing red agent jumping over black obstacle to reach green goal, (2) Test scenario with
obstacle removed, (3-5) Model-generated predictions (image reconstructions) at timesteps
t = 2, t = 5, and t = 11. Despite never observing the agent in an obstacle-free environment
during training, the model predicts the agent will take a direct path to the goal rather than
maintaining the jumping trajectory, aligning with rational action principles.
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We adapted this paradigm to test our model’s predictive capabilities. During training,
the model only observed scenarios where a red ball agent jumped in an arc trajectory over
a black obstacle to reach a green goal box. For the test condition, we removed the obstacle
and observed the model’s predictions (reconstructed images) of future timesteps without any
additional training.

As shown in Figure 4.5, our VAD model correctly predicted that the agent would take
a direct, efficient path to the goal when the obstacle was removed, despite never having ob-
served this scenario during training. This behavior mirrors the expectations documented in
12-month-old infants by Gergely and Csibra (2003), who demonstrated that infants show in-
creased looking times when agents maintain unnecessary jumping trajectories after obstacles
are removed.

This result suggests that our VAD model captures not just perceptual aspects of agency
but also rudimentary principles of rational action—the expectation that agents will take the
most efficient path to achieve their goals.

The model appears to have disentangled the agent’s goal (reaching the green box) from
the specific trajectory necessitated by environmental constraints, enabling it to generate
rational predictions when those constraints change.

4.2 Improving Multi-Agent Reinforcement Learning
To address our third research question, we evaluate whether our agent-centric representations
lead to improved performance in multi-agent reinforcement learning tasks. We incorporated
our LVAD loss as an auxiliary loss during MARL training. Figure 4.6 presents performance
results in the MPE environment. Our experimental setup consists of three agents collab-
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Figure 4.6: Performance comparison between standard Independent PPO (red) and Inde-
pendent PPO augmented with our LVAD loss (blue) in the MPE environment. The leftmost
panel shows the environment with three agents: one vision-based agent (dark blue) and
two state-based agents (red). The three right panels display reward curves for each agent
during training in a generalization scenario with novel agent and landmark configurations.
All agents benefit from the additional LVAD loss, with the vision agent showing particularly
improved sample efficiency.
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orating in a parallelized JAX implementation of the MPE Gym environment. The blue
agent (leftmost panel) operates solely from visual observations, while the two red agents
have full access to environment state information, including the blue agent’s position. All
agents are trained using Independent PPO but receive rewards influenced by the global team
performance, resulting in similar reward trajectories.

Importantly, both the baseline and our model use identical perception architectures: a
CNN encoder followed by Slot Attention for scene decomposition. The key difference is that
our approach augments this architecture with our LVAD loss. This isolates the impact of our
variational formulation while controlling for encoder capabilities.

When comparing training with standard PPO loss versus PPO augmented with our
LVAD loss, we observe consistently improved sample efficiency across all agents. The VAD-
augmented model (teal) achieves higher rewards earlier in training and maintains this ad-
vantage throughout. While both methods ultimately converge to similar performance levels,
our approach reaches convergence with significantly fewer environment interactions.

4.3 Mirror-Like Neural Representations in Slot Activa-
tions

This section explores the presence of mirror-like neural representations within the learned
slot vectors of our variational agent discovery model, specifically in the MPE environment
where multiple agents perform similar actions. We posit that if our model is truly learning
agent-centric representations, then the slot vectors corresponding to different agents should
exhibit correlated activation patterns when the agents perform the same actions. This be-
havior would be analogous to biological mirror neurons, which activate both when an animal
performs an action and when it observes another agent performing the same action (Rizzo-
latti and Craighero, 2004).

4.3.1 Evaluation Methodology
To investigate the presence of mirror-like neural patterns, we performed a detailed analysis
of the slot vector activations conditioned on agent actions in the MPE environment. We
manually mapped three slots to the three agents through visual inspection across 15 episodes,
confirming that our model consistently assigns specific slots to individual agents.

Each slot representation s̃it is a 128-dimensional vector encoding the agent’s state. For
each agent and corresponding slot, we grouped the slot activation vectors according to the
action taken by the agent at that timestep:

s̃a,i = {s̃it | ait = a} (4.3)

where s̃it represents the state vector for slot i at timestep t, and ait is the action taken by the
agent assigned to slot i. The actions were discretized into five categories: Left, Right, Up,
Down, and Stay.
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We then computed the Pearson correlation coefficient between the same feature across
different agent slots for each action a and feature dimension j:

ri,ka,j = Pearson(s̃ja,i, s̃
j
a,k) (4.4)

where s̃ja,i denotes the j-th component of the slot vectors for agent i when performing action
a. In our analysis, we refer to the j-th feature of the 128-dimensional slot vector as Fj (e.g.,
F57 refers to the 57th feature dimension).

For each action, we computed a mirror score for each feature by averaging the absolute
correlation coefficients across all agent pairs:

MirrorScorea,j =
1

|P |
∑

(i,k)∈P

|ri,ka,j| (4.5)

where P is the set of all agent pairs. We then identified the top five features with the highest
mirror scores for each action.

4.3.2 Results
Our analysis reveals clear evidence of mirror-like neural representations within the learned
slot vectors. For each discrete action (Left, Right, Up, Down, Stay), we identified specific
features that show strong correlations across different agent slots.

Figure 4.7 shows the mirror neuron analysis for the Right action. The feature activation
heatmap (left panel) displays the mean activation values of the top five mirror features
across the three agent slots. The middle panel presents a 3D scatter plot where each point
represents the values of a specific feature across all three agent slots simultaneously, with
points from the same feature sharing the same color. The clustering of points from the same
feature indicates consistent activation patterns when different agents perform the same action.
The right panel visualizes the averaged slot vector activations with the top mirror features
highlighted.

A similar analysis for the Up action (Figure 4.8) identifies feature F107 as having the
strongest mirror-like properties, with consistent activation patterns across agent slots when
agents move upward.

For the Down action (Figure 4.9), we identified feature F78 as having the strongest
mirror properties. This feature shows high positive activation values with strong cross-agent
correlations when agents move downward.

The Left action analysis (Figure 4.10) reveals a more distributed pattern of mirroring
compared to other directional actions. While there are correlations across agent slots, we
don’t observe a single dominant feature with strong mirror-like properties. Instead, sev-
eral features contribute to the representation of leftward movement with varying degrees of
correlation.

Finally, the Stay action (Figure 4.11) reveals a more complex encoding pattern where
multiple features work in combination rather than a single dominant feature, such as the
negative activation of F27 and F43 alongside positive activation of F80.
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Figure 4.7: Mirror neuron analysis for the Right action. Left: Feature activation heatmap
showing mean activation values for the top five mirror features (columns) across three agent
slots (rows). Middle: 3D scatter plot where each point represents a specific feature’s values
across all three agent slots, with points of the same color representing the same feature.
The clustering pattern indicates similar activation profiles across different agents performing
the same action. Right: Average slot activation pattern across all agents, with feature
F57 highlighted (white box) as having the strongest mirror properties for the Right action.
Feature dimensions were reshaped to an 8×16 grid for visualization.
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Figure 4.8: Mirror neuron analysis for the Up action. The visualization follows the same
structure as Figure 4.7. Feature F107 (highlighted in the right panel) shows the strongest
mirror properties for this action, with highly correlated activation patterns across all three
agent slots when they perform upward movement.



4.4. SUMMARY OF FINDINGS 66

F78 F15 F111 F72 F95

Feature

s̃ 1
s̃ 2

s̃ 3

S
lo

t

2.02 0.03 0.21 0.22 0.21

2.06 0.08 0.28 0.17 0.15

2.14 0.20 0.01 -0.15 0.12

Top Mirror Slot Feature Activations

0.00

0.50

1.00

1.50

2.00

A
ct

iv
at

io
n

0.0
1.0

2.0
s̃1 Value

-1.0
0.0

1.0
2.0

s̃ 2
Val

ue

-1.0

0.0

1.0

2.0

s̃ 3
V

al
u

e

Slots Feature Values

Features

F78

F15

F111

F72

F95

F78

Average Slot Activation

-2.00

-1.00

0.00

1.00

2.00

A
ct

iv
at

io
n

Slot Action Activation Analysis for Down Actions

Figure 4.9: Mirror neuron analysis for the Down action. Feature F78 (highlighted in the
right panel) exhibits the strongest mirror properties for this action. Note how this feature
has consistently positive activation values across all agent slots, in contrast to the mirror
features for other actions, which may have negative values for some agents.
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Figure 4.10: Mirror neuron analysis for the Left action. The visualization follows the same
structure as previous figures. Unlike Right, Up, and Down actions, leftward movement is
represented by multiple features with moderate correlations rather than a single strongly
correlated feature across agent slots.

4.4 Summary of Findings
The slot-based representations learned by our VAD model demonstrate consistent entity
tracking with functional decomposition of scenes, as evidenced by our qualitative analysis
in Figure 4.4. The identification of mirror-like neural patterns in slot activations suggests
our VAD model develops a common neural code for agent actions that generalizes across
entities—a computational analog to biological mirror neuron systems. The action-specific
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Figure 4.11: Mirror neuron analysis for the Stay action. The stationary state appears to
be encoded through a combination of features, including negative activation of F27 and F43
alongside positive activation of F80, suggesting that the absence of movement is represented
through a pattern of coordinated feature activations rather than a single dedicated feature.

nature of these patterns indicates specialized feature encodings for different actions.
The VAD model’s ability to predict rational actions in modified environments (Figure

4.5) aligns with teleological reasoning capabilities observed in infant cognition studies. This
emergent capacity for anticipating efficient means to goals without explicit training suggests
deeper abstraction of intentional agency than merely associating visual patterns with actions.

These findings collectively support our hypothesis that modeling latent actions through
variational inference using our LVAD objective enables learning agent-centric representations
that capture meaningful structure in multi-agent environments, improving both represen-
tation quality and downstream learning performance. The approach links computational
implementation with cognitive science theories of agency perception, offering a quantitative
framework for further investigation.
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Key Findings

1. Representation Quality: Our VAD model consistently outperforms object-
centric baselines across all environments (8-17% improvement) as shown in Ta-
bles 4.4, 4.5, 4.1, and 4.3, demonstrating more effective encoding of agent-centric
information.

2. Generalization Capability: The VAD model maintains robust performance
in novel scenarios with previously unseen agents, goals, or configurations, with
22-33% advantage over baselines in generalization scenarios, particularly evident
in the Novel Agent Gap metrics in Tables 4.4 and 4.5.

3. Mirror-Like Neural Patterns: Analysis of slot vector activations in Figures
4.7-4.11 reveals action-specific features that activate consistently across different
agent slots, analogous to mirror neuron systems in cognitive neuroscience, with
feature F57 strongly correlated with rightward movement and F107 with upward
movement.

4. Rational Action Prediction: In our adaptation of Gergely & Csibra’s (2003)
experiment (Figure 4.5), the VAD model correctly predicts efficient trajectories
in novel scenarios, suggesting it captures principles of rational agency similar to
those observed in infant cognition studies.

5. Reinforcement Learning Efficiency: As an auxiliary objective in MARL
(Figure 4.6), our LVAD improves sample efficiency by 21.8% in early training and
maintains a 7.6% final performance advantage, with consistent improvements
across both vision-based and state-based agents.



Chapter 5

Discussion

Our experimental evaluation from Ch. 4 demonstrates several key findings, summarized in
Table 5.1.

Table 5.1: Summary of performance improvements and generalization capabilities across
representational and reinforcement learning tasks
Environment Task Accuracy Improvement Generalization Advantage Rel. Improvement

MPE
Action Prediction +15-17% +28% 3.6×
Goal Prediction +8-16% +26% 7.6×
MARL Reward +7.6% (final) +21.8% (early) 1.14×

Minigrid
Action Prediction +13% +33% 2.8×
Goal Prediction +13% +32% 3.0×

Overcooked Action Prediction +12-13% +22% 2.4×

Accuracy Improvement: Performance gain over object-centric baseline on standard test cases. For
MARL, final reward improvement. Generalization Advantage: Performance gain in novel

scenarios. For MARL, early training improvement. Rel. Improvement: Ratio of our method’s
performance to baseline in challenging conditions.

This chapter examines these results in light of our central contribution: the LVAD ob-
jective for unsupervised agent discovery from visual observations. We begin by discussing
the generality of our optimization objective, followed by analysis of our VAD model’s agent-
centric representations, generalization capabilities, connections to cognitive science, limita-
tions, and future work.

5.1 Generality of the LVAD Objective
A key strength of our work lies in the generality of the LVAD objective itself. While our
implementation uses specific architectural choices—Slot Attention for structured scene rep-
resentation and Gumbel-Softmax for discrete action modeling—the underlying optimization
objective makes minimal assumptions about the specific mechanisms used to realize these
components.
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The fundamental premise of our approach is that agent discovery can be formulated as
a variational inference problem with latent actions. This formulation requires only that we
have (1) some form of structured, factored representation of the visual input that distin-
guishes potential agents from the background environment, and (2) a means of inferring
and generating actions that explain transitions between these representations. The specific
implementation details are largely independent of this core theoretical framework.

In our current work, we chose Slot Attention (Kipf et al., 2021) as our structured rep-
resentation mechanism because it has demonstrated strong performance in object-centric
learning. However, our LVAD objective could readily accommodate other approaches to
structured scene decomposition, such as MONet (Burgess et al., 2019), IODINE (Greff et al.,
2020), or future advances in object-centric perception. Similarly, while we implemented dis-
crete actions using the Gumbel-Softmax trick, our framework could be adapted to continuous
action spaces using traditional reparameterization techniques or more sophisticated density
estimation approaches.

This generality suggests that our contribution—the framing of agent discovery as infer-
ence over latent actions through the LVAD objective—should remain valuable as structured
representation methods continue to evolve. Future work might explore how our objective
performs when combined with alternative approaches to scene decomposition or when scaled
to more complex action spaces. The flexibility of our formulation may allow it to benefit from
advances in both object-centric representation learning and variational inference techniques,
potentially leading to even stronger agent discovery capabilities.

Furthermore, this generality aligns with cognitive theories suggesting that the percep-
tion of agency is a flexible, abstract capability that operates over diverse sensory inputs and
behavioral patterns. Just as humans can recognize agency across vastly different percep-
tual contexts—from simple geometric shapes to complex biological motion—our approach
provides a generalizable computational framework that could potentially adapt to many
different manifestations of agency.

5.2 Agent-Centric Representations
Our VAD model consistently outperforms the object-centric baseline across all environments
and evaluation metrics (see Table 5.1). The VAD model achieves this by structuring its
representations around agent-centered policies and latent actions rather than merely tracking
visual features or object positions.

5.2.1 Predictive Power for Agent Properties
Beyond the basic capacity to identify and track agents, our VAD model demonstrates strong
performance in predicting specific agent properties. As shown in Tables 4.4, 4.5, 4.1, and
4.2, the learned slot representations consistently enable accurate prediction of both agent
actions and goals across all environments. This suggests that the VAD model captures not
only entities that are agents but also their goals and behavior.

The ability to predict these properties from learned representations could have beneficial
implications for artificial social intelligence. A system that can infer actions and goals may
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serve as a foundation for more sophisticated agent modeling capabilities. Future work could
explore whether these representations also encode other agency-related properties such as
beliefs about the environment (essential for modeling false-belief understanding), reward
functions, or value estimates (important for predicting long-term strategic behavior).

The current results suggest that our LVAD objective provides a starting substrate for such
extensions.

5.2.2 Functional Entity Decomposition
The qualitative analysis of slot reconstructions (Figure 4.4) provides insights into how our
VAD model decomposes scenes into functionally relevant entities. Unlike traditional object-
centric approaches that decompose based solely on visual properties, our VAD model appears
to organize representations according to behavioral significance. For instance, in the Over-
cooked environment, slot 1 consistently captures the red agent along with its frequently
manipulated objects (onions), while slot 2 reconstructs the blue agent with its associated
cooking pot. This functional grouping suggests the VAD model forms representations based
on agent-object relationships and interaction patterns rather than just visual similarity.

The consistency of these assignments across training and testing conditions indicates
that the VAD model has learned robust agent-centric representations that transfer to novel
scenarios. Particularly notable is the VAD model’s performance in the MPE environment,
where it not only maintains consistent slot assignments for familiar agents but appropriately
allocates a separate slot to a previously unseen third agent. This suggests the VAD model
has learned to identify agent-like entities based on their behavioral characteristics rather
than memorizing specific visual patterns from training.

5.2.3 Generalization to Novel Scenarios
A key finding across all environments is our VAD model’s generalization performance com-
pared to the object-centric baseline. In the Minigrid environment, our approach demon-
strated only a 15.1% performance drop in action prediction when generalizing to a novel
goal object (Table 4.1), compared to the baseline’s 42.5% drop. Similarly, in the Overcooked
environment, our VAD model showed approximately 12% performance degradation when
tested on spatially reconfigured kitchens (Table 4.3), whereas the baseline exhibited around
28% degradation.

The most compelling evidence for our VAD model’s generalization capabilities comes
from the MPE environment, where it achieved 76% action prediction accuracy for a novel
third agent (Agent 3⋆ in Table 4.4) - only 7.3% lower than its performance on familiar agents.
This contrasts with the object-centric baseline, which showed a 26.2% performance gap.

These generalization results may be attributed to our explicit formulation of agent dis-
covery as a variational inference problem with latent actions. By structuring the LVAD
objective around inferring policies and actions that explain observed transitions, the VAD
model appears to develop more abstract representations of agency that transfer more readily
to novel scenarios. Our LVAD objective may encourage the model to discover underlying
principles of agent behavior (policies) rather than merely associating specific visual patterns
with particular transitions.
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5.3 Rational Action Understanding
The rational action prediction experiment (Figure 4.5) provides evidence that our VAD
model may capture principles of action reasoning similar to those observed in infant cognition
studies. When shown an agent jumping over an obstacle to reach a goal during training, and
then presented with the same scenario but with the obstacle removed during testing, the
VAD model predicted the agent would take a direct path to the goal. This result may
suggest the VAD model has disentangled the agent’s goal (reaching the goal object) from
the specific trajectory necessitated by environmental constraints.

This behavior aligns with Gergely and Csibra (2003)’s teleological stance theory, which
proposes that humans interpret actions in terms of rational means to achieve goals given
environmental constraints. The VAD model appears to have developed an implicit under-
standing that agents typically take efficient paths toward goals when possible, despite never
being explicitly trained on obstacle-free scenarios. This suggests our approach can capture
not just perceptual aspects of agency but also rudimentary principles of rational action that
support prediction in novel situations.

The ability to predict rational agent behavior in modified environments indicates that the
VAD model has learned to represent goals and constraints separately, allowing it to generate
appropriate predictions when constraints change.

5.4 Improving Multi-Agent Reinforcement Learning
The MARL results demonstrate that incorporating our LVAD objective as an auxiliary loss
during reinforcement learning can improve sample efficiency while maintaining comparable
final performance. As shown in Figure 4.6 and quantified in Table 5.1, agents trained with the
auxiliary LVAD loss consistently achieved higher rewards earlier in training compared to those
using standard PPO alone. Both our loss and the baseline loss eventually converge to similar
performance levels, but our agent reaches this convergence point with fewer environment
interactions, demonstrating better sample efficiency.

This improvement in sample efficiency suggests that the structured agent-centric represen-
tations learned through our LVAD objective provide valuable inductive biases that accelerate
learning in multi-agent settings. By explicitly modeling other agents as entities with goals
and policies, agents may plan and explore more effectively during training.

5.5 Mirror-Like Neural Representations
Our analysis of slot vector activations reveals evidence of mirror-like neural representations
within the learned VAD model. For specific actions like Right, Up, and Down, we identified
individual features (F57, F107, and F78 respectively) that activate consistently across differ-
ent agent slots when the corresponding actions are performed, as shown in Figures 4.7, 4.8,
and 4.9. This may suggest the VAD model has learned neural codes for representing actions
that generalize across different agents.
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The action-specific nature of these mirror features aligns with findings from neuroscience
research on mirror neurons, which show selectivity for specific actions (Rizzolatti and Craighero,
2004). In our VAD model, directional movements appear to be encoded through distinct,
specialized features, while the Stay action involves a distributed pattern of activation across
multiple features (negative activation of F27 and F43 alongside positive activation of F80),
as shown in Figure 4.11.

These mirror-like representations suggest that our VAD model has learned to abstract
the concept of actions beyond the specific agent performing them. This emergence of action
encodings across different agent representations was not explicitly encouraged in the training
objective but appears to arise naturally from the LVAD objective. From a computational
perspective, such shared representations may facilitate prediction and understanding in multi-
agent scenarios by allowing the VAD model to transfer knowledge about one agent’s behavior
to another.

It is worth noting that the mirror-like patterns for the Left action (Figure 4.10) were
less pronounced than for other directional actions. This may be partially explained by the
action distribution in our dataset, as illustrated in Figure 5.1. The Left action was sampled
substantially less frequently than other actions across all agent slots.
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Figure 5.1: Distribution of action samples across the three agent slots (S1, S2, S3) and the
cumulative distribution (Total). The horizontal axis shows the five discrete actions (Left,
Right, Up, Down, Stay), while the vertical axis shows the sample counts. Note that the Left
action consistently has the lowest representation across all slots, potentially explaining the
weaker mirror neuron patterns observed for this action.

5.6 Limitations and Future Work
While our VAD model demonstrates significant improvements over object-centric baselines
for agent-centric learning, MARL, and other experiments, several limitations suggest direc-
tions for future work.

5.6.1 Action Representation Limitations
A key limitation of our experimental design is that we only evaluated environments where
agents took discrete actions. While this choice simplified implementation and analysis,
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it does not take into account the continuous action space of many other agent environ-
ments. Our VAD model architecture is actually quite amenable to continuous action spaces—
implementing this would require replacing the Gumbel-Softmax operation with the standard
reparameterization (2.3.6) trick commonly used in variational autoencoders with continuous
latent variables.

Furthermore, the relatively small action space (5 discrete actions) in our environments
provides only a limited test of the VAD model’s representational capacity. Real-world sce-
narios often involve much larger action spaces or continuous action manifolds with high
dimensionality. Future work should evaluate the VAD model in environments with signifi-
cantly larger or continuous action spaces, which would provide a better test of its ability to
infer meaningful action distributions and accurately model complex policies.

5.6.2 Generalization to Novel Agent Structures
While our approach demonstrates strong generalization to novel scenarios with familiar agent
structures, it may face challenges with agents that have fundamentally different structures
or appearances. The Slot Attention mechanism we build upon is known to generalize well
to objects with familiar structures but can struggle with entirely novel morphologies (Kipf
et al., 2021). Our VAD model inherits this limitation, potentially constraining its application
in scenarios where agent appearances differ substantially from those seen during training.

Future work should investigate architectures that can better separate agent function from
agent form, perhaps through more explicit disentanglement of structural features in the slot
representations. This could enable more robust generalization to agents with novel physical
structures but similar behavioral characteristics.

5.6.3 MARL Generalization Evaluation
Our MARL experiments demonstrate improved sample efficiency and final performance when
incorporating the LVAD objective, but they do not fully explore cross-agent generalization.
An important extension would be to evaluate scenarios where the vision-based agent, trained
with two red agents, must collaborate with three or more agents at test time.

Additionally, conducting reinforcement learning experiments across all our environments
(Minigrid, Overcooked, MPE) would provide a more comprehensive picture of how agent-
centric world models affect learning in different contexts. These experiments could reveal
whether the benefits of our LVAD objective are universal or environment-dependent, and
identify which types of multi-agent tasks benefit most from structured agent representations.

5.6.4 Scaling to More Complex Environments
The environments used in our evaluation, while diverse in their agent structures, remain
relatively simplified compared to real-world scenarios. The agents follow optimal or near-
optimal policies with consistent behaviors, potentially making the task of agent discovery
easier than in natural settings where behavior might be more variable or suboptimal.

Future work should test the VAD model in environments with greater visual complexity,
more agents, and more varied interaction patterns. Particularly valuable would be evalua-
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tions on cognitively inspired visualization datasets like those used in psychological reasoning
studies (Shu et al., 2021), which contain more naturalistic agent interactions. Such environ-
ments would provide a stronger test of the VAD model’s ability to identify agents and infer
goals in scenarios closer to human social perception tasks.

Perhaps the most challenging and valid evaluation would be on real-world datasets fea-
turing actual human, animal, or robotic agents. Such datasets would introduce numerous
additional complexities absent from simulated environments, including partial occlusions,
varying lighting conditions, complex and sometimes irrational behaviors, and significant
variations in agent appearances. Evaluating on real-world pedestrian tracking datasets, ani-
mal behavior recordings, or sports game footage would provide the ultimate test of whether
our approach can scale to the full complexity of naturally occurring agent interactions.

5.6.5 Mirror Neuron Analysis Limitations
The mirror neuron analysis, while suggestive of shared representational structures across
agents, has several limitations. First, the correlation-based approach does not account for
potential nonlinear relationships between feature activations. Second, the analysis focuses
on individual feature dimensions rather than potentially distributed representations across
multiple dimensions. More sophisticated techniques such as Canonical Correlation Analysis
or methods from interpretable machine learning might reveal additional structure in the
learned representations.

Additionally, as shown in Figure 5.1, the uneven distribution of action samples has likely
affected the quality of mirror representations for less frequent actions like Left.

5.6.6 Comparison with Language-Based Social Reasoning
Our approach emphasizes vision-based agent detection and social reasoning, which appears to
differ meaningfully from language-based Theory of Mind (ToM) capabilities Li et al. (2023);
Nguyen (2025). Although not detailed in this thesis, preliminary observations (which we
encourage readers to explore) suggest that large vision-language models (VLMs) struggle
to identify agents in visual sequences like those used in our experiments. A systematic
comparison between vision-based agent discovery models and language-based models on
such tasks could illuminate the relationship between different modalities of social cognition
and help clarify the unique challenges involved in visual agent perception.

Such benchmarking could strengthen our findings that social reasoning through vision
represents a distinct cognitive capacity from language-based ToM reasoning, potentially re-
quiring different computational modules. This comparison would also inform ongoing dis-
cussions about embodied versus disembodied social cognition in both artificial intelligence
and cognitive science.

5.6.7 Limited Complexity of Social Understanding
While our VAD model shows promising results in agent representation and action prediction,
it remains far from capturing the full complexity of human social cognition. The model
has not yet been evaluated—and we suspect it may struggle—with representing higher-order
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mental states (e.g., beliefs about other agents’ beliefs), complex social goals, or deceptive
behaviors, all of which are central to human social understanding.

Extending the VAD model to incorporate hierarchical goal structures or nested belief rep-
resentations would bring it closer to the sophisticated Theory of Mind capabilities observed
in human cognition. This might involve augmenting the current architecture with explicit
modules for representing mental states of other agents, potentially drawing inspiration from
Bayesian models of Theory of Mind.

5.7 Connections to Cognitive Science and Future Vali-
dation

5.7.1 Potential Connections to Neural Mechanisms
Our computational approach offers a potential starting point to connect neuroscientific the-
ories of agent perception with computational algorithms. The mirror-like neural patterns
observed in our VAD model’s representations share some similarities with patterns described
in predictive coding frameworks proposed by Kilner et al. (2007b) and Friston et al. (2011)
for understanding the mirror neuron system. These frameworks suggest that the mirror sys-
tem helps humans infer intentions behind observed actions by minimizing prediction errors
across the cortical hierarchy.

Similarly, our LVAD objective minimizes prediction errors between observed state transi-
tions and those predicted by inferred actions, which may have some analogies to the predictive
coding mechanisms hypothesized to underlie biological agent perception. Our optimization
objective potentially represents a quantitative, falsifiable hypothesis about mechanisms of
agent perception—inspired by Cao and Yamins (2021a)’s Contravariance Principle that mod-
els addressing complex computational tasks with minimal simplification might converge on
solutions with some shared functional properties with biological systems.

The VAD model’s behavior in the rational action prediction experiment (Figure 4.5) sug-
gests that inferring latent actions from transitions may facilitate the emergence of efficiency-
based action understanding. This behavior bears some resemblance to Gergely and Csibra
(2003)’s teleological stance theory.

By demonstrating these capabilities emerging from the LVAD objective operating on vi-
sual input, our work suggests the possibility that certain aspects of social cognition might
arise from principles of predictive processing, though the extent of overlap between our com-
putational mechanisms and biological implementation remains an open empirical question.

5.7.2 Future Neuroscientific Validation
To move beyond such speculative connections, future work should collect empirical neu-
roscientific data to test whether similar optimization principles might be implemented in
biological systems. Designing human neuroimaging experiments closely mirroring our com-
putational tasks would allow researchers to examine whether neural activity patterns share
meaningful similarities with our VAD model’s operations.
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Such experiments could involve recording neural activity using fMRI or EEG while par-
ticipants observe agent-based scenarios similar to those in our computational tasks. Of
particular interest would be examining neural responses in regions implicated in agent per-
ception, such as the superior temporal sulcus (STS) and temporoparietal junction (TPJ).

For instance, one could examine whether neural representations in the STS contain infor-
mation about both observed state transitions and potentially inferred actions in a manner
that might relate to prediction error minimization. Multivariate pattern analysis (MVPA)
techniques could be employed to decode agent-specific information from neural activation
patterns and compare the representational geometry with that of our VAD model’s learned
slot representations.

Additionally, neuroimaging studies could explore whether the mirror-like neural patterns
we observed in our VAD model have any corresponding patterns in human mirror neuron
systems. This would involve examining whether neural representations for specific actions
maintain consistency across observed and executed actions, and whether these patterns gen-
eralize across different agents performing the same actions.

Such neuroscientific investigation would help determine whether our computational ap-
proach has captured any meaningful aspects of biological agent perception. Testing whether
neural data show patterns with any relationship to our variational inference approach could
provide valuable insights into the degree of overlap between computational models and bio-
logical mechanisms of social perception.



Chapter 6

Conclusion

This thesis began with a fundamental question: What constitutes an agent? Inspired by
foundational studies in cognitive science—from Heider and Simmel (1944)’s geometric shapes
to Gergely and Csibra (2003)’s teleological reasoning experiments—we sought to develop a
computational framework that could perceive agency from raw visual data. This goal led us
to formulate agent discovery as a structured variational inference problem, resulting in the
LVAD objective and its implementation through the VAD model.

Throughout the thesis, we posed several core questions that have guided this research.
Let us revisit them in light of our findings:

Can we formalize the computations that transform visual input into represen-
tations of agency? We addressed this by developing the LVAD objective, which provides
a mathematically rigorous framework for inferring latent actions from observed state transi-
tions. This objective explicitly models the link between perceptions and actions, creating an
inductive bias toward agent-centric representations. The success of this formulation across
diverse environments may suggest that a variational approach to action inference captures
essential aspects of agent perception.

Can we learn to distinguish agents from non-agents in complex scenes? Our
VAD model has demonstrated the ability to decompose visual scenes into meaningful entity-
centric representations, with clear separation between agent and non-agent slots as shown in
Figure 4.4. The model’s slot representations consistently encode agent-specific information
like policies, goals, and behavioral patterns, enabling accurate prediction of future actions
and goals across environments.

Can agent-centric representations improve multi-agent reinforcement learn-
ing? Our experiments with the LVAD objective as an auxiliary loss in MARL settings demon-
strate improved sample efficiency. These results support that structured agent-centric world
models facilitate more efficient learning in multi-agent contexts, potentially by allowing
agents to better predict and respond to others’ behaviors.

Do computational models of agency share functional properties with human
social cognition? Our VAD model exhibits some weak parallels with aspects of human
social perception. The emergence of mirror-like neural patterns (Figures 4.7–4.11) suggests
the model has developed a common neural code for actions across different agents, analogous
to mirror neuron systems in primates. Additionally, the model’s ability to predict rational
actions in novel scenarios (Figure 4.5) aligns with teleological reasoning observed in infant
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cognition studies, suggesting deeper action understanding beyond mere pattern recognition.
From a machine learning perspective, our work utilizes object-centric representation learn-

ing in multi-agent reinforcement learning, demonstrating how structured world models that
explicitly account for agency can improve learning efficiency. The LVAD objective offers a
flexible loss that could be integrated with various architectures and applied across different
domains where agent modeling is essential.

From a cognitive science perspective, our computational approach offers a quantitative,
falsifiable hypothesis about mechanisms underlying agent perception. By framing agency
detection as variational inference over latent actions, we provide a potential mathematical
description of how the brain might transform visual input into structured agent representa-
tions.

More broadly, this thesis contributes to an emerging interdisciplinary effort to understand
social intelligence through computational modeling. By developing systems that can perceive
agency, infer goals, and predict rational actions, we take steps toward artificial intelligence
that can navigate social environments with the same intuitive understanding that humans
possess. This capability will be essential for AI systems that need to collaborate effectively
with humans, interpret social cues, and understand human intentions from observation alone.

In conclusion, this thesis demonstrates that framing agent discovery as variational
inference over latent actions provides a principled approach to learning agent-centric repre-
sentations from visual observations.
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